Chitin and Carbohydrate Composition of Eight Insect Species Used as Feed and Food
Keywords:
structural carbohydrates, soluble sugars, beetle larvae, fly larvae, crickets, silkworm pupaeAbstract
Edible insects represent a sustainable source of protein and bioactive compounds, however their carbohydrate composition, particularly structural polysaccharides like chitin, substantially affects nutritional quality. This study provides a comparative analysis of chitin and carbohydrate composition of eight insect species across larval (Tenebrio molitor, Alphitobius diaperinus, Hermetia illucens, Musca domestica), pupal (Bombyx mori), and adult (Gryllodes sigillatus, Acheta domesticus, Gryllus assimilis) stages. Neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and chitin content varied significantly with species and developmental stage, reflecting differences in cuticular structure and physiological adaptations. Neutral detergent fiber (NDF) content varied considerably across species, with the lowest value in Bombyx mori pupae (92.02 ± 2.44 g.kg⁻¹ DM) and the highest in Tenebrio molitor larvae (290.40 ± 6.14 g.kg⁻¹ DM). Acid detergent fiber (ADF) showed a minimum of 72.90±8.68 g.kg⁻¹ DM (B. mori pupae) and a maximum of 133.16±0.97 g.kg⁻¹ DM (Gryllus assimilis adults). Chitin content (ADF-ADL) was lowest in B. mori pupae (64.32±9.65 g.kg⁻¹ DM) and highest in G. assimilis adults (123.45±1.28 g.kg⁻¹ DM); alternative estimation via ADF-CPADF ranged from 37.95±4.52 to 78.78±2.00 g.kg⁻¹ DM, highlighting methodological sensitivity. Soluble sugars were highest in larvae, whereas polyols, accumulated predominantly in pupae (glycerol in B. mori 11.43±0.43 g.kg⁻¹ DM) and adults (glycerol in A. domesticus 7.20±0.04 g.kg⁻¹ DM). These results emphasize the importance of standardized chitin quantification and targeted processing strategies for optimizing the nutritional value of insect-derived feed and food. This integrative approach advances the understanding of insect carbohydrate composition and supports efforts to valorize edible insects in sustainable nutrition systems.
References
Abenaim, L., & Conti, B. (2025). Harnessing Chitin from Edible Insects for Livestock Nutrition. Insects, 16(8), 799. https://doi.org/10.3390/insects16080799
Adámková, A., Kouřimská, L., Borkovcová, M., Kulma, M., & Mlček, J. (2016). Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo. https://doi.org/10.5219/609
Bovera, F., Loponte, R., Marono, S., Piccolo, G., Parisi, G., Iaconisi, V., ... & Nizza, A. (2016). Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science, 94(2), 639-647. https://doi.org/10.2527/jas.2015-9201
da Silva Lucas, A. J., Oreste, E. Q., Costa, H. L. G., López, H. M., Saad, C. D. M., & Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chemistry, 343, 128550. https://doi.org/10.1016/j.foodchem.2020.128550
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., ... & Knutsen, H. K. (2022). Safety of frozen and freeze‐dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 20(7), e07325. https://doi.org/10.2903/j.efsa.2022.7325
Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo biology: published in affiliation with the American zoo and aquarium association, 26(2), 105-115. https://doi.org/10.1002/zoo.20123
Hahn, T., Roth, A., Febel, E., Fijalkowska, M., Schmitt, E., Arsiwalla, T., & Zibek, S. (2018). New methods for high‐accuracy insect chitin measurement. Journal of the Science of Food and Agriculture, 98(13), 5069-5073. https://doi.org/10.1002/jsfa.9044
Hu, B., Li, C., Zhang, Z., Zhao, Q., Zhu, Y., Su, Z., & Chen, Y. (2017). Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities. Food Chemistry, 231, 348-355. https://doi.org/10.1016/j.foodchem.2017.03.152
Ivanišová, E., Mihaľ, M., & Kolesárová, A. (2022). Edible insects–history, characteristics, benefits, risks and future prospects for use. Int. J. Exp. Res, 27, 69-74. https://doi.org/10.52756/ijerr.2022.v27.008
Ivanišová, E., Rajnoha, M., Harangozo, Ľ., Kunecová, D., Čech, M., Gabriny, L., ... & Pietrzak-Fiećko, R. (2023). Physicochemical, nutritional, antioxidant, and sensory properties of crackers supplemented with edible insects. Applied Sciences, 13(21), 11911. https://doi.org/10.3390/app132111911
Janssen, R. H., Vincken, J. P., van den Broek, L. A., Fogliano, V., & Lakemond, C. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of agricultural and food chemistry, 65(11), 2275-2278. https://doi.org/10.1021/acs.jafc.7b00471
Khayrova, A., Lopatin, S., & Varlamov, V. (2019). Black soldier fly Hermetia illucens as a novel source of chitin and chitosan. Int. J. Sci, 8(04), 81-86. https://doi.org/10.18483/ijSci.2015
Lee, J. C. (2019). What we can learn from the energetic levels of insects: a guide and review. Annals of the Entomological Society of America, 112(3), 220-226. https://doi.org/10.1093/aesa/say051
Luparelli, A. V., Leni, G., Fuso, A., Pedrazzani, C., Palini, S., Sforza, S., & Caligiani, A. (2023). Development of a quantitative UPLC-ESI/MS method for the simultaneous determination of the chitin and protein content in insects. Food Analytical Methods, 16(2), 252-265. https://doi.org/10.1007/s12161-022-02411-2
Makkar, H. P., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal feed science and technology, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
Mašková, Z., Medo, J., Kolesár, E., Tančinová, D., Ivanišová, E., Urminská, D., ... & Barboráková, Z. (2025). Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae. Insects, 16(1), 87. https://doi.org/10.3390/insects16010087
Onsongo, V. O., Osuga, I. M., Gachuiri, C. K., Wachira, A. M., Miano, D. M., Tanga, C. M., ... & Fiaboe, K. K. M. (2018). Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. Journal of economic entomology, 111(4), 1966-1973. https://doi.org/10.1093/jee/toy118
Pilco-Romero, G., Chisaguano-Tonato, A. M., Herrera-Fontana, M. E., Chimbo-Gándara, L. F., Sharifi-Rad, M., Giampieri, F., ... & Álvarez-Suárez, J. M. (2023). House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends in Food Science & Technology, 142, 104226. https://doi.org/10.1016/j.tifs.2023.104226
Psarianos, M., Rossi, G., Van Der Borght, M., & Schlüter, O. K. (2025). Methods for estimating the chitin content of edible insects: Advantages and challenges. Carbohydrate Polymers, 367, 124009. https://doi.org/10.1016/j.carbpol.2025.124009
Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 and repealing Regulation (EC) No 258/97 and Commission Regulation (EC) No 1852/2001. Official Journal of the European Union, L327, 1–22.
Regulation (EU) 2017/2470 of the Commission of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283. Official Journal of the European Union, L351, 72–201.
Regulation (EU) 2017/893 of the Commission of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV, and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Official Journal of the European Union, L138, 92–116.
Regulation (EU) 2021/1925 of the Commission of 5 November 2021 amending Regulation (EU) 2017/2470 as regards the conditions of use and specifications of the novel food Acheta domesticus (house cricket). Official Journal of the European Union, L393, 4–6.
Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular nutrition & food research, 57(5), 802-823. https://doi.org/10.1002/mnfr.201200735
Shah, A. M., Qazi, I. H., Matra, M., & Wanapat, M. (2022). Role of chitin and chitosan in ruminant diets and their impact on digestibility, microbiota and performance of ruminants. Fermentation, 8(10), 549. https://doi.org/10.3390/fermentation8100549
Shaphan, Y. C., Tanga, M. C., Isaac, M. O., Xavier, C., Ekesi, S., & Joop, J. A. (2020). Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. http://hdl.handle.net/123456789/1383
Sharbidre, A., S., Gogoi, H., & Patil, R. (2021). Characterization of chitin content extracted from edible insect, Coridius nepalensis (Westwood, 1837) (Hemiptera: Dinidoridae). International Journal of Tropical Insect Science, 41(2), 1893-1900. https://doi.org/10.1007/s42690-020-00386-3
Soetemans, L., Uyttebroek, M., & Bastiaens, L. (2020). Characteristics of chitin extracted from black soldier fly in different life stages. International Journal of Biological Macromolecules, 165, 3206-3214.
Son, Y. J., Hwang, I. K., Nho, C. W., Kim, S. M., & Kim, S. H. (2021). Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan. Foods, 10(3), 640. https://doi.org/10.3390/foods10030640
Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., ... & Falabella, P. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific reports, 12(1), 6613.
Udomsil, N., Imsoonthornruksa, S., Gosalawit, C., & Ketudat-Cairns, M. (2019). Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Science and Technology Research, 25(4), 597-605. https://doi.org/10.3136/fstr.25.597
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58(1), 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
Wang, H., ur Rehman, K., Feng, W., Yang, D., ur Rehman, R., Cai, M., ... & Zheng, L. (2020). Physicochemical structure of chitin in the developing stages of black soldier fly. International Journal of Biological Macromolecules, 149, 901-907. https://doi.org/10.1016/j.ijbiomac.2020.01.293
Yang, Y., Xu, S., Gao, W., Wei, Y., Wang, L., & Lai, C. (2025). Chitinase improves the available energy, amino acids digestibility of black soldier fly and fecal microbiota of growing pigs. Animal Bioscience, 38(8), 1733. https://doi.org/10.5713/ab.24.0920
Yi, L., Lakemond, C. M., Sagis, L. M., Eisner-Schadler, V., Van Huis, A., & van Boekel, M. A. (2013). Extraction and characterisation of protein fractions from five insect species. Food chemistry, 141(4), 3341-3348. https://doi.org/10.1016/j.foodchem.2013.05.115
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Matúš Džima, Miroslav Juráček, Daniel Bíro, Milan Šimko, Branislav Gálik, Michal Rolinec, Ondrej Hanušovský, Mária Kapusniaková, Kristína Kolbaská, Ester Vargová

This work is licensed under a Creative Commons Attribution 4.0 International License.