Weed Control in the Maize Stand in Dry Agroecology Conditions

Authors

  • Denis Onufer Institute of Agronomic Sciences, FAFR SUA Nitra
  • Štefan Týr Institute of Agronomic Sciences, FAFR SUA Nitra

Keywords:

maize, herbicides, treatment timing, weed control, weed infestation

Abstract

The most common active ingredients of herbicides used in maize are, for example: dicamba, rimsulfuron, nicosulfuron, dimethenamid. The experiment was carried out at the PPD Inovec Volkovce farm. The aim of this work was to utilize the possibilities of chemical weed control and analyze them on plots with sown maize. The control of weed species were monitored and the effectiveness of the herbicides used with specific active ingredients applied according to variants: early post-emergent and post-emergent were also evaluated. The partial objectives of the work were: 1. evaluation of the current weed infestation using numerous methods on control and treated variants 2. evaluation of the effectiveness of regulatory intervention on variants treated with herbicides 3. evaluation of the phytotoxicity. The experiment was carried out on their standard plots with maize sown according to the sowing plan. Experimental area was set aside each year that has only been sown and has not been further treated. Chemical treatments in the experiment were carried out in accordance with the EPPO PP1/181(5) methodology. Untreated control area was covered with foil during the application of herbicides. Based on the use of available herbicides, the variants were divided into early post-emergence treatment up to the 3rd leaf of maize and post-emergence treatment up to the 6th leaf of maize. The best result had variant with active ingredients dicamba and prosulfuron in early post-emergence treatment.

References

Alam, P. et al. (2021). Effect of pre and post-emergence herbicides on growth, yield and economics of linseed (Linum usitatissimum L.) under irrigated medium land condition of Jharkhand. The Pharma Innovation Journal, 10(5): 293-297.

Allmendinger, A., Spaeth, M., Saile, M., Peteinatos, G.G., Gerhards, R. (2022). Precision chemical weed management strategies: A review and a design of a new CNN-based modular spot sprayer. Online. Agronomy. 12(7), 1620. Available at: https://doi.org/10.3390/agronomy12071620 [date of citation 2024-05-08].

Braz, G.B.P., Takano, H.K. (2022). Chemical control of multiple herbicide-resistant Amaranthus. Online. A review. Advances in Weed Science, 40(Spe2), e0202200062. Available at: https://doi.org/10.51694/ AdvWeedSci/2022;40:Amaranthus009 [date of citation 2024-05-08].

Bretas, I.L., Dubeux, J.C.B., Jr., Zhao, C., Queiroz, L.M.D., Flynn, S., Ingram, S., Oduor, K.T., Cruz, P.J.R., Ruiz-Moreno, M., Loures, D.R.S., Valente, D.S.M., Chizzotti, F.H.M. (2024). Detection and mapping of Amaranthus spinosus L. in bermudagrass pastures using drone imagery and deep learning for a site-specific weed management. Online. Agronomy Journal, 1–13. Available at: https://doi.org/10.1002/agj2.21545 [date of citation 2024-05-12].

Busi, R, et al. (2020). Cinmethylin controls multiple herbicide-resistant Lolium rigidum and its wheat selectivity is P450-based. Pest Manag Sci 76:2601–2608.

Da Silva Brochado, M.G.; Mielke, K.C.; de Paula, D.F.; Souza Laube, A.F.; Alcántara-de la Cruz, R.; Pereira Gonzatto, M.; Ferreira Mendes, K. (2022). Impacts of dicamba and 2,4-D drift on ‘Ponkan’ mandarin seedlings, soil microbiota and Amaranthus retroflexus. J. Hazard. Mater. Adv. 2022, 6, 100084.

De Cauwer, B.; De Meuter, I.; De Ryck, S.; Dekeyser, D.; Zwertvaegher, I.; Nuyttens, D. (2023). Performance of drift-reducing nozzles in controlling small weed seedlings with contact herbicides. Agronomy 2023, 13, 1342.

Ding, J. et al. (2021). Tillage and seeding strategies for wheat optimizing production in harvested rice fields with high soil moisture. Sci. Rep. 2021, 11, 119.

EPPO database. (2021). Online. Available at: https://pp1.eppo.int/standards/PP1-181-5 [date of citation 2024-03-04].

Guerra, J.G., et al. (2022). How weed management influence plant community composition, taxonomic diversity and crop yield: A long-term study in a Mediterranean vineyard. Agriculture, Ecosystems & Environment, 326, 107816.

Hasan, A.S.M.M., Sohel, F., Diepeveen, D., Laga, H., Jones, M.G.K. (2021). A survey of deep learning techniques for weed detection from images. Online. Computers and Electronics in Agriculture, 184, 106067. Available at: https://doi.org/10.1016/j.compag.2021.106067 [date of citation 2024-05-10].

Heap I. (2022). The International Survey of Herbicide Resistant Weeds. Online. Westminster, Weed Science Society of America. Available at: http://weedscience.org [date of citation 2024-05-10].

Champion, P. (2019). Best Management Practice for Aquatic Weed Control, Part One: The Framework. Hamilton, New Zealand: National Institute of Water & Atmospheric Research Ltd. Client Report. 82 p.

Interný zdroj PPD Inovec Volkovce. (2022). Osobná konzultácia na podniku za účelom získavania základných informácií o pozemku, kde bol pokus realizovaný, dňa 10.11.2022 [Personal consultation at the company to obtain basic information about the land where the experiment was carried out, on November 10, 2022].

Jančovič, J. - Vozár, Ľ. (2009). Zásady a perspektívy pestovania krmovín na ornej pôde. [Principles and perspectives of growing forage on arable land]. Online. Available at: http://www.agroporadenstvo.sk/rv/krmoviny/krmoviny_orpoda.htm [date of citation 2024-03-11].

Jin, X., Che, J., Chen, Y. (2021). Weed identification using deep learning and image processing in vegetable plantation. Online. IEEE Access, 9, 10940–10950. Available at: https://doi.org/10.1109/ACCESS.2021.305 0296 [date of citation 2024-05-12].

Kolářová, M. (2024). Výskyt plevelu na zemědelsky obhospodarované pude a faktory pusobíci na složení plevelových spoločenstev. ČZÚ Praha - Habilitačná práca. [Weed occurrence on agriculturally managed soils and factors affecting the composition of weed communities. ČZU Prague - Habilitation thesis]. 2024, 183 s.

Kumar, V., Kumari, A., Price, A.J., Bana, R.S., Singh, V., Bamboriya, S.D. (2023). Impact of Futuristic Climate Variables on Weed Biology and Herbicidal Efficacy. Online. A Review. Agronomy 2023,13,559. Available at: https://doi.org/10.3390/agronomy13020559 [date of citation 2024-05-11].

Li, J., et al. (2022). Returns to public investments in clean plant centers: A case study of leafroll virus-tested grapevines in support of cost-effective grape production systems. Journal of Wine Economics, 1–16.

Manzone, M. et al. (2020). Technical solutions for under-row weed control in vineyards: Efficacy, costs and environmental aspects analysis. Journal of Agricultural Engineering, 51(1), 36-42.

Schmidt, F., Böhm, H., Graß, R., Wachendorf, M., Piepho, H.P. (2023). Management Effect on the Weed Control Efficiency in Double Cropping Systems. Online. Agronomy 2023, 13,467. Available at: https://doi.org/10.3390/ agronomy13020467 [date of citation 2024-05-08].

Silva, T.S., Arneson, N.J., DeWerff, R.P., Smith, D.H., Silva, D.V., Werle, R. (2023). Preemergence herbicide premixes reduce the risk of soil residual weed control failure in corn. Online. Weed Technol. 37: 410–421. Available at: https://doi.org/10.1017/ wet.2023.45 [date of citation 2024-05-08].

Sohn, S.I., Oh, Y.J., Pandian, S., Lee, Y.H., Zaukuu, J.L. Z., Kang, H.J., Ryu, T.H., Cho, W.S., Cho, Y.S., Shin, E.K. (2021). Identification of Amaranthus species using visible-near-infrared (Vis-NIR) spectroscopy and machine learning methods. Online. Remote Sensing, 13(20), 4149. Available at: https://doi.org/10.3390/rs13204149 [date of citation 2024-05-08].

Šuk J., Mikulka J., Sen M.K., Košnarová P., Hamouzová K., Soukup J. (2023). First cases of herbicide resistance of Tripleurospermum inodorum in the Czech Republic. Plant Soil Environ., 69: 81–87.

Travlou, E., Antonopoulos, N., Gazoulis, I., Kanatas, P. (2024). Chemical Weed Control and Crop Injuries Due to Spray Drift: The Case of Dicamba. Online. Agrochemicals 2024,3,22–28. Available at: https://doi.org/10.3390/agrochemicals3010003 [date of citation 2024-05-08].

Týr, Š. (2003). Regulácia burín v porastoch kukurice [Weed control in corn stands]. Online. Available at: http://www.agroporadenstvo.sk/ochrana/burkuk.htm?start [date of citation 2024-03-12].

Týr, Š., Vereš, T. (2012). Náuka o burinách [Weed science]. SPU v Nitre: Nitra, 2012, 129 s. ISBN 978-80-552-0897-8.

Týr, Š., Olšovská, K., Kupec, M., Štefanko, A., Sóki, S.G., Majtán, K. (2024). Korovi kao indikator biodiverziteta sistema gajenja [Weeds as an indicator of biodiversity of the cultivation systems]. In Kvalitet zemljišta AP Vojvodine značaj diverzifikacije proizvodnje za očuvanje zemljišta. 1.edition. [35] p. ISBN 978-86-7520-621-7. Kvalitet zemljišta AP Vojvodine značaj diverzifikacije proizvodnje za očuvanje zemljišta. Novi Sad: Univerzitet u Novom Sadu. 2024, p. 11-17.

Vilček, J. (2005). Vhodnosť poľnohospodárskeho pôdneho fondu pre pestovanie kukurice [Suitability of agricultural land for growing corn]. Online. Available at: http://www.podnemapy.sk/portal/verejnost/multifunkcne/kuk_repka.aspx [date of citation 2024-03-22].

Wardak, D.L.R., Padia, F.N., de Heer, M.I., Sturrock, C.J., Mooney, S.J. (2025). Zero-Tillage Induces Reduced Bio-Efficacy Against Weed Species Amaranthus retroflexus L. Dependent on Atrazine Formulation. Agronomy 2025,15,360. https://doi.org/10.3390/agronomy15020360 [date of citation 2024-05-10].

Downloads

Published

2025-12-31

Issue

Section

Plant Science