Structural parameters and quality of maize silage

Authors

  • Ondrej Hanušovský Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra https://orcid.org/0000-0001-9039-7467
  • Miroslav Juráček Slovak University of Agriculture in Nitra
  • Daniel Bíro Slovak University of Agriculture in Nitra
  • Petr Doležal Mendel University Brno, Czech Republic
  • Milan Šimko Slovak University of Agriculture in Nitra
  • Branislav Gálik Slovak University of Agriculture in Nitra
  • Michal Rolinec Slovak University of Agriculture in Nitra
  • Matúš Džima Slovak University of Agriculture in Nitra
  • Mária Kapusniaková Slovak University of Agriculture in Nitra
  • Michal Radošovský Slovak University of Agriculture in Nitra

Keywords:

particle size, nutritional indicators, fermentation indicators, structure of the fermented forage

Abstract

The objective of this study was to evaluate the nutritional, fermentative, and structural quality of maize silage treated with a microbial inoculant and to assess how varying particle sizes influence the content of basic nutrients, fiber fractions, and fermentation parameters. Maize silage was prepared using a two-line hybrid (FAO 480) and ensiled with an inoculant containing Lactobacillus buchneri, Pediococcus pentosaceus, and Lactobacillus plantarum. After two months of storage, average samples of silage were collected, mixed, and subsampled for particle size distribution and chemical analysis. The particle size of maize silage was assessed using the Penn State Particle Separator with sieves: >19 mm, 8.1–19 mm, 4.1–8 mm, and <4 mm. Maize silage (n=3) and each particle fraction (n=3) underwent chemical analysis. The results revealed that 73.33% of particles were retained on the first two sieves (8.1–19.0 mm and >19.0 mm), considered optimal for dairy cow feeding. Particle size had impact on silage composition. Finer particles (<4 mm) contained significantly higher levels of dry matter, crude fat, starch, organic matter, non-structural carbohydrates, and nitrogen-free extract, and lower contents of crude ash, crude protein, crude fiber, and fiber fractions. Similarly, fermentation quality was affected by particle size: finer fractions had significantly lower levels of lactic acid, acetic acid, formic acid, ethanol, fermentation products, acidity of water extract, pH, and proteolysis. Based on neutral detergent fiber and starch content, the silage met the criteria for first quality class, while its higher acetic acid concentration-linked to the use of L. buchneri-classified it as third quality class according to fermentation criteria. The results of this study confirmed that particle size distribution significantly affects the nutritional profile and fermentation dynamics of maize silage.

References

Beauchemin, K. A. (2018). Invited review: Current perspectives on eating and rumination activity in dairy cows. Journal of dairy science, 101(6), 4762-4784. https://doi.org/10.3168/jds.2017-13706

Bal, M.A., Shaver, R.D., Jirovec, A.G., Shinners, K.J., & Coors, J. G. (2000). Crop processing and chop length of corn silage: Effects on intake, digestion, and milk production by dairy cows. Journal of dairy science, 83(6), 1264-1273.

Bíro, D. et al. (2020). Conservation and processing of feed. 2. ed. Slovak University of Agriculture in Nitra. (In Slovak)

Commission regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed.

Doležal, P. et al. (2012). Feed conservation. Baštan Publisher. Mendel University in Brno. (In Czech)

Ebling, T.L., & Kung Jr, L. (2004). A comparison of processed conventional corn silage to unprocessed and processed brown midrib corn silage on intake, digestion, and milk production by dairy cows. Journal of dairy science, 87(8), 2519-2526. https://doi.org/10.3168/jds.S0022-0302(04)73376-7

Ferreira, G., & Mertens, D. R. (2005). Chemical and physical characteristics of corn silages and their effects on in vitro disappearance. Journal of dairy science, 88(12), 4414-4425. https://doi.org/10.3168/jds.S0022-0302(05)73128-3

Grant, R. (2019). Rethinking forage particle size. Hay & Forage Grower. https://hayandforage.com/print-article-2769-permanent.html

Grant, R., Smith, W., & Miller, M. (2020). Relationships between fibre digestibility and particle size for lactating dairy cows. WCDS Advances in dairy technology, William H. Miner Agricultural Research Institute, Chazy, NY 32, 47-57.

Grant, R. J., Morrison, S. Y., & Chase, L. E. (2022). Varying Proportions of Alfalfa and Corn Silage for Lactating Dairy Cows. William H. Miner Agricultural Research Institute, Chazy, NY a Department of Animal Science, Cornell University. https://www.whminer.org

Haselmann, A., Zehetgruber, K., Fuerst-Waltl, B., Zollitsch, W., Knaus, W., & Zebeli, Q. (2019). Feeding forages with reduced particle size in a total mixed ration improves feed intake, total-tract digestibility, and performance of organic dairy cows. Journal of dairy science, 102(10), 8839-8849. https://doi.org/10.3168/jds.2018-16191

Havrdová, N., Roztočil, D., Petrášková, E., Tejml, P., Kernerová, N., Poborská, A., ... & Šoch, M. (2023). The effect of the number of feed pushing-ups on animal behavior, dry matter intake and milk yield of dairy cows. Journal of central european agriculture, 24(4), 789-801. https://doi.org/10.5513/JCEA01/24.4.4053

Heinrichs, J. A., & Jones, H. (2022). Penn State Particle Separator. PennState Extention. https://extension.psu.edu/penn-state-particle-separator#section-13

Heuzé, V., Tran, G., Edouard, N., & Lebas F. (2017). Maize silage. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/13883

Hossain, E. (2021). Forage particle size: it’simplifications on behavior, performance, health and welfare of dairy cows. Online journal of animal and feed research, 11(3), 72-81. https://dx.doi.org/10.51227/ojafr.2021.13

Hristov, A. N., Harper, M. T., Roth, G., Canale, C., Huhtanen, P., Richard, T. L., & DiMarco, K. (2020). Effects of ensiling time on corn silage neutral detergent fiber degradability and relationship between laboratory fiber analyses and in vivo digestibility. Journal of dairy science, 103(3), 2333-2346. https://doi.org/10.3168/jds.2019-16917

IBM SPSS Statistics Version 26.0 IBM Corp., Armonk, NY.

Jančík, F., Kubelková, P., Loučka, R., Jambor, V., Kumprechtová, D., Homolka, P., ... & Výborná, A. (2022). Shredlage processing affects the digestibility of maize silage. Agronomy, 12(5), 1164. https://doi.org/10.3390/agronomy12051164

Joch, M., Kudrna, V., Výborná, A., Tyrolová, Y., Jančík, F., Kubelková, P., ... & Tichá, D. (2023). Effect of corn shredlage on feed intake, rumen fermentation, and lactation performance of dairy cows fed a low-fibre diet. Italian Journal of animal science, 22(1), 116-124. https://doi.org/10.1080/1828051X.2023.2165976

Juráček, M., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., ... & Ševčík, P. (2024). Effect of various additives on the fermentation quality of corn silage. Journal of Central European Agriculture, 25(1), 146-153. https://doi.org/10.5513/JCEA01/25.1.4120

Karnatam, K. S., Mythri, B., Un Nisa, W., Sharma, H., Meena, T. K., Rana, P., ... & Sandhu, S. (2023). Silage maize as a potent candidate for sustainable animal husbandry development—perspectives and strategies for genetic enhancement. Frontiers in genetics, 14, 1150132. https://doi.org/10.3389/fgene.2023.1150132

Kahyani, A., Ghorbani, G. R., Alikhani, M., Ramezani, O., Asemi Esfahani, M., Ahmadi, F., & Nasrollahi, S. M. (2022). Chewing activities, sorting behaviour and ruminal fermentation of lactating dairy cows fed diets with similar proportions of undigested neutral detergent fibre with wheat straw substituted for alfalfa hay, corn silage or both. Italian Journal of animal science, 21(1), 1453-1464. https://doi.org/10.1080/1828051X.2022.2120421

Khan, N. A., Yu, P., Ali, M., Cone, J. W., & Hendriks, W. H. (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. Journal of the science of food and agriculture, 95(2), 238-252. https://doi.org/10.1002/jsfa.6703

Kitaw, G., Terefe, G., Faji, M., Mengistu, G., Dejene, M., Fekadu, D., ... & Mekonnen, B. (2024). Effect of maize (Zea mays L.) genotypes, harvesting stages and ensiling periods on fermentation and nutritional value of silage. Grass research, 4(1). https://doi.org/10.48130/grares-0024-0006

Kmicikewycz, A. D., & Heinrichs, A. J. (2015). Effect of corn silage particle size and supplemental hay on rumen pH and feed preference by dairy cows fed high-starch diets. Journal of dairy science, 98(1), 373-385. https://doi.org/10.3168/jds.2014-8103

Laroche, J.-P. (2025). How can we determine the ideal amount of corn silage in dairy cow diets? Progressive Dairy. https://www.agproud.com/articles/60804-how-can-we-determine-the-ideal-amount-of-corn-silage-in-dairy-cow-diets#:~:text=The%20optimal%20proportion%20of%20corn,factors%20unique%20to%20each%20operation

Manzocchi, E., Hengartner, W., Kreuzer, M., & Giller, K. (2020). Effect of feeding hay vs. silages of various types to dairy cows on feed intake, milk composition and coagulation properties. Journal of dairy research, 87(3), 334-340. https://doi.org/10.1017/s0022029920000801

Mičiaková, M., Strapák, P., Strapáková, E., & Szencziová, I. (2025). Evaluating Rumination Time Changes During Estrus in Dairy Cows. Dairy, 6(1), 5. https://doi.org/10.3390/dairy6010005

Mitrík, T. (2021). Ensilage. Wageningen Academic Publishers.

Mlynár, R., Rajčáková, Ľ., & Gallo, M. (2004). The effect of Lactobacillus buchneri on fermentation process and aerobic stability of maize silage. Risk factors of food chain, Nitra, SPU, 2004, 170-172.

Nasrollahi, S. M., Imani, M., & Zebeli, Q. (2015). A meta-analysis and meta-regression of the effect of forage particle size, level, source, and preservation method on feed intake, nutrient digestibility, and performance in dairy cows. Journal of dairy science, 98(12), 8926-8939. https://doi.org/10.3168/jds.2015-9681

Natnael, D. A., Tao, W., Gui-Xin, Q., Yu-Guo, Z., Xue-Feng, Z., Xue, C., ... & Seidu, A. (2020). Effects of physically effective fiber on rumen and milk parameters in dairy cows: A review. Indian journal of animal research, 54(11), 1317-1323. http://dx.doi.org/10.18805/ijar.B-1104

Nikolić, V., Žilić, S., Radosavljević, M., Vančetović, J., & Božinović, S. (2020). Properties of different silage maize hybrids. Food and Feed Research, 47(2), 139-147. http://dx.doi.org/10.5937/ffr47-29244

Nikolić, V., Simić, M., Žilić, S., Kravić, N., Babić, V., Filipović, M., & Srdić, J. (2022). Quality parameters of maize hybrids intended for silage production. Acta agriculturae serbica, 27(54), 157-163. http://dx.doi.org/10.5937/AASer2254157N

Pastierik, O., Šimko, M., Bíro, D., Juráček, M., Gálik, B., & Rolinec, M. (2014). The effect of growing locality on the nutritive value of maize silage hybrids with various FAO number. Acta fytotechnica et zootechnica, 17(1). DOI: 10.15414/afz.2014.17.01.24-29

Rajčáková, Ł., Loučka, R., Mlynár, R., & Poláčiková, M. (2013). The content of starch and energy in maize silages in Slovakia and the Czech Republic in years 2010-2012. 97-100.

Saylor, B.A., McCary, C.L., Diepersloot, E.C., Heinzen Jr, C., Pupo, M.R., Gusmão, J.O., Ghizzi, L.G., Sultana, H., & Ferraretto, L.F. (2021). Effect of forage processor roll gap width and storage length on fermentation profile, nutrient composition, kernel processing score, and starch disappearance of whole-plant maize silage harvested at three different maturities. Agriculture, 11(7), 574. https://doi.org/10.3390/agriculture11070574

Serva, L. (2024). A comparative evaluation of maize silage quality under diverse pre-ensiling strategies. Plos one, 19(9), e0308627. https://doi.org/10.1371/journal.pone.0308627

Smith, W. A. (2019). Relationships between undigested and physically effective fiber in lactating dairy cow diets. The University of Vermont and State Agricultural College.

Wang, E., Cha, M., Wang, S., Wang, Q., Wang, Y., Li, S., & Wang, W. (2023). Feeding corn silage or grass hay as sole dietary forage sources: overall mechanism of forages regulating health-promoting fatty acid status in milk of dairy cows. Foods, 12(2), 303. https://doi.org/10.3390/foods12020303

Worku, A., Tóthi, R., Orosz, S., Fébel, H., Kacsala, L., Vermeire, D., & Tóth, T. (2021). Novel mixtures of Italian ryegrass and winter cereals: influence of ensiling on nutritional composition, fermentation characteristics, microbial counts and ruminal degradability. Italian journal of animal science, 20(1), 749-761. https://doi.org/10.1080/1828051X.2021.1924883

Wu, Y., Zhao, B., Li, Q., Kong, F., Du, L., Zhou, F., ... & Yuan, J. (2019). Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition. PLoS One, 14(12), e0225753. https://doi.org/10.1371/journal.pone.0225753

Zurak, D., Grbeša, D., & Kljak, K. (2018). Physical properties and fermentation profile of maize silage on large farms in Croatia. Journal of central european agriculture, 19(1), 126–141. https://doi.org/10.5513/JCEA01/19.1.2031

Downloads

Published

2025-12-31

Issue

Section

Animal Science