Fatty Acid Profile of Commercial Dry Puppies’ Food

Authors

  • Matúš Džima Slovak University of Agriculture in Nitra, Slovakia
  • Boglárka Bodon P.G. Trade, spol. s r.o. Komárno, Slovakia
  • Daniel Bíro Slovak University of Agriculture in Nitra, Slovakia
  • Milan Šimko Slovak University of Agriculture in Nitra, Slovakia
  • Branislav Gálik Slovak University of Agriculture in Nitra, Slovakia
  • Michal Rolinec Slovak University of Agriculture in Nitra, Slovakia
  • Ondrej Hanušovský Slovak University of Agriculture in Nitra, Slovakia
  • Mária Kapusniaková Slovak University of Agriculture in Nitra, Slovakia
  • Stanislava Drotárová Slovak University of Agriculture in Nitra, Slovakia
  • Andrej Duchoň Slovak University of Agriculture in Nitra, Slovakia
  • Štefánia Buschbacher Slovak University of Agriculture in Nitra, Slovakia
  • Ela Tarišková Slovak University of Agriculture in Nitra, Slovakia
  • Miroslav Juráček Slovak University of Agriculture in Nitra, Slovakia

Keywords:

puppy, nutrition, complete food, fat quality

Abstract

The aim of this study was to determine the fat content and fatty acid profile of 5 commercial dry granulated dog foods purchased in Slovakia and to compare the  analyzed content with the  minimum requirements for fat and fatty acid content according to FEDIAF (2021), and also to compare the fat content with the manufacturer‘s declared fat content on the packaging. The samples were analyzed in the Laboratory of Quality and Nutritional Value of Feeds, Slovak University of Agriculture in Nitra, according to standard laboratory procedures and techniques. The results confirmed that four out of the five puppy compound feeds tested, met the requirements for fatty acid content according to FEDIAF (2021). All samples met the requirements for a minimum fat content of 85.00 g.kg-1 DM, a minimum linoleic acid content of 13.00 g.kg-1 DM, a minimum arachidonic acid content of 0.30 g.kg-1 DM, and an α-linolenic acid content of 0.80 g.kg-1 DM. Four samples met the minimum EPA + DHA content requirement, while sample E did not meet the minimum limit (0.50 g.kg-1 DM). When comparing the declared fat content on the packaging and the determined total fat content of the tested foods, we found a lower fat content of 0.23% for sample B and 4.78% for sample C.

References

Alonge, S., Melandri, M., Leoci, R., Lacalandra, G. M., Caira, M., & Aiudi, G. (2019). The Effect of Dietary Supplementation

of Vitamin E, Selenium, Zinc, Folic Acid, and N-3 Polyunsaturated Fatty Acids on Sperm Motility and Membrane Properties in Dogs. Animal, 9(2), 34. https://doi.org/10.3390/ani9020034

Barbeau-Grégoire, M., Otis, C., Cournoyer, A., Moreau, M., Lussier, B., & Troncy, É. (2022). A 2022 Systematic Review and Meta-Analysis of Enriched Therapeutic Diets and Nutraceuticals in Canine and Feline Osteoarthritis. International Journal of Molecular Sciences, 23(18), 10384. https://doi.org/10.3390/ijms231810384

Bauer, J. E. (2016). The essential nature of dietary omega-3 fatty acids in dogs. Javma-journal of The American Veterinary Medical Association, 249(11), 1267–1272. https://doi.org/10.2460/javma.249.11.1267

Buddhachat, K., Siengdee, P., Chomdej, S., Soontornvipart, K., & Nganvongpanit, K. (2017). Effects of different omega-3 sources, fish oil, krill oil, and green-lipped mussel against cytokine-mediated canine cartilage degradation. In Vitro Cellular & Developmental Biology – Animal, 53(5), 448–457. https://doi.org/10.1007/s11626-016-0125-y

Combarros, D., Castilla-Castaño, E., Lecru, L.-A., Pressanti, C., Amalric, N., & Cadiergues, M. C. (2020). A prospective, randomized, double blind, placebo-controlled evaluation of the effects of an n-3 essential fatty acids supplement (Agepi® ω3) on clinical signs, and fatty acid concentrations in the erythrocyte membrane, hair shafts and skin surface of dogs with poor quality coats. Prostaglandins Leukotrienes and Essential Fatty Acids, 159, 102140. https://doi.org/10.1016/j.plefa.2020.102140

Crisi, P. E., Luciani, A., Tommaso, M. D., Prasinou, P., Santis, F. D., Chatgilialoglu, C., Pietra, M., Procoli, F., Sansone, A., Giordano M. V., Gramenzi, A., Ferreri, C., & Boari, A. (2021). The Fatty AcidBased Erythrocyte Membrane Lipidome in Dogs with Chronic Enteropathy. Animal, 11(9), 2604. https://doi.org/10.3390/ani11092604

Dillon, G. P., Keegan, J. D., Wallace, G., Yiannikouris, A., & Moran, C. A. (2018). The validation & verification of an LC/MS method for the determination of total docosahexaenoic acid concentrations in canine blood serum. Regulatory Toxicology and Pharmacology, 98, 198–203.

https://doi.org/10.1016/j.yrtph.2018.03.021

Ebrahimi, M., Rajion, M. A., Jafari, S., Jahromi, M. F., Sazili, A. Q., Oskoueian, E., Goh, Y. M., Ghaffari, M., & Ghaffari, M. H. (2018). Effects of dietary n-6: N-3 polyunsaturated fatty acid ratios on meat quality, carcass characteristics, tissue fatty acid profiles, and expression of lipogenic genes in growing goats. PLOS ONE, 14(9), e0222678. https://doi.org/10.1371/journal.pone.0188369

FEDIAF (2021). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs. The European Pet Food Industry Federation, Bruxelles, Belgium.

Gaylord, L., Remillard, R., & Saker, K. E. (2018). Risk of nutritional deficiencies for dogs on a weight loss plan. Journal of Small Animal Practice, 59(11), 695–703. https://doi.org/10.1111/jsap.12913

Hadley, K. B., Bauer, J., & Milgram, N. W. (2017). The oil-rich alga Schizochytrium sp. As a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence. Prostaglandins Leukotrienes and Essential Fatty Acids, 118, 10–18. https://doi.org/10.1016/j.plefa.2017.01.011

Hall, J. A., & Jewell, D. E. (2012). Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets agerelated changes in serum fatty acids and carnitine metabolites. PLOS ONE , 7(11), e49510. https://doi.org/10.1371/journal.pone.0049510

Han, X., & Ye, H. (2021). Overview of Lipidomic Analysis of Triglyceride Molecular Species in Biological Lipid Extracts. Journal of Agricultural and Food Chemistry, 69(32) 8895–8909. https://doi.org/10.1021/acs.jafc.0c07175

Jiang, Z., Zhong, W. J., Zheng, C. T., Lin, Y. C., & Jiang, S. Q. (2010). Conjugated linoleic acid differentially regulates fat deposition in backfat and longissimus muscle of finishing pigs. Journal of Animal Science, 88(5), 1694–1705. https://doi.org/10.2527/jas.2008-1551

Magalhães, T. R., Lourenço, A. L., Gregório, H., & Queiroga, F. L. (2021). Therapeutic Effect of EPA/DHA Supplementation in Neoplastic and Non-neoplastic Companion Animal Diseases: A Systematic Review. In vivo, 35(3), 1419–1436. https://doi.org/10.21873/invivo.12394

Mat, K., Kari, Z. A., Rusli, N. D., Harun, H. C., Wei, L. S., Rahman, M. M., Khalid, H. N. M., Hakim, A. H., Sukri, S. A. M., Khalif, R. I. A. R., Zin, Z. M., Zainol, M. K., Panadi, M., Nor, M. F. M., & Goh, K. W. (2022). Coconut Palm: Food, Feed, and Nutraceutical Properties. Animals, 12(16), 2107. https://doi.org/10.3390/ani12162107

Mehler, S. J., May, L. R., King, C., Harris, W. S., & Shah, Z. (2016). A prospective, randomized, double blind, placebocontrolled evaluation of the

effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukotrienes and Essential Fatty Acids, 109, 1–7. https://doi.org/10.1016/j.plefa.2016.03.015

Mihok, T., Hreško Šamudovská, A., Bujňák, L., Timkovičová Lacková, P., Zigo, F. (2023). The Impact of Nutrition on Dog Blood Serum Malondialdehyde Levels as One of the Oxidative Stress Indicators. International Journal of Veterinary Science and Agriculture Research, 5(6), 77–81. https://www.ijvsar.com/Publised/IJVA5I6/IJV932426273.pdf

Molversmyr, E., Devle, H. M., Næss-Andresen, C. F., & Ekeberg, D. (2022). Identification and quantification of lipids in wild and farmed Atlantic salmon (Salmo salar), and salmon feed by GC‐MS. Food Science and Nutrition, 10(9), 3117–3127. https://doi.org/10.1002/fsn3.2911

O‘keefe, S. F., Bianchi, L., & Sharman, J. (2015). Soybean nutrition. SM Journal of Nutrition and Metabolism, 1(2), 1006.

Regulation of the Slovak Ministry of Agriculture no. 2145/2004-100 (2004) about sampling of feeds and about laboratory testing and evaluation of feeds (pp. 342) (in Slovak).

Rolinec, M., Bíro, D., Gálik, B., Šimko, M., Juráček, M., Tvarožková, K., & Ištoková, A. (2016). The nutritive value of selected commercial dry dog foods. Acta Fytotechnica et Zootechnica, 19(1), 25–28. https://doi.org/10.15414/afz.2016.19.01.25-28

Santos, M. C. dos, Milani, C., Zucchini, P., Quirino, C. R., Romagnoli, S., & Cunha, I. C. N. da. (2020). Salmon oil supplementation in dogs affects the blood flow of testicular arteries. Reproduction in Domestic Animals, 56(3), 476–483. https://doi.org/10.1111/rda.13886

Shahidi, F., Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology, 9, 345–381. https://doi.org/10.1146/annurev-food-111317-095850

Vastolo, A., Iliano, S., Laperuta, F., Pennacchio, S., Pompameo, M., & Cutrignelli, M. I. (2021). Hemp Seed Cake as a Novel Ingredient for Dog’s Diet. Frontiers in Veterinary Science, 8, 754625. https://doi.org/10.3389/fvets.2021.754625

Watson, A., Rostaher, A., Fischer, N. M., & Favrot, C. (2021). A novel therapeutic diet can significantly reduce the medication score and pruritus of dogs with atopic dermatitis during a ninemonth controlled study. Veterinary Dermatology, 33, 55–e18. https://doi.org/10.1111/vde.13020

Zhong, W., Wei, Z., Luo, G., Luo, J., & Guo, L. (2022). Effect of n-6/n-3 PUFA ratio on body fat deposition, tissues fatty acid composition and key genes expression of liver lipid metabolism in silver foxes (Vulpes vulpes fulva) during the winter fur-growth period. Frontiers in Veterinary Science, 9, 986388. https://doi.org/10.3389/fvets.2022.986388

Downloads

Published

2024-07-02

Issue

Section

Animal Science