The Effect of Biostimulants on the Selected Parameters of Seed Germination of Genus Festuca

Authors

  • Peter Kovár Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Agronomic Sciences, Slovak Republic
  • Luboš Vozár Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Agronomic Sciences, Slovak Republic
  • Peter Hric Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Agronomic Sciences, Slovak Republic

Keywords:

brown seaweed, fescue, germinability, biostimulant, humines

Abstract

In the laboratory experiments with selected grass species of the genus Festuca (F.) was evaluated the effect of 3 supporting preparations (plant growth stimulant, preparation with humic substances and extract from brown seaweed) on the germination process. There were evaluated total germination at the end of the experiment, the rate of germination and the mean germination time (MGT) in this experiment. Plant growth stimulant (F. pallens +7.21% and F. rubra +6.76% compared to control) and extract from brown seaweed (F. filiformis +28.09%, F. pallens +30.93% and F. rubra +17.07% and F. arundinacea +1.45% compared to control) showed stimulating effect on total germination from all used preparations. The effect was statistically significant (p = 0.0246). Those preparations can be evaluated positively in terms of their effect on the rate of germination, which at F. filiformis increased by approximately 0.34 seeds.day-1 to 0.36 seeds.day-1, at F. rubra 0.05 seeds.day-1 to 0.14 seeds.day-1 and at F. arundinacea 0.04 seeds.day-1 to 0.11 seeds.day-1 compared to control. For acceleration of the germination of F. pallens (+0.39 seeds.day-1) worked only plant growth stimulant. The values ​​of mean germination time showed a shortened germination period after use of extract from brown seaweed at F. filiformis (-0.77 days), F. pallens (-0.26 days) and F. rubra (-0.41 days), preparation with humic substances at F. filiformis (-0.13 days) and plant growth stimulant at F. pallens (-0.02 days) and F. rubra (-0.14 days).

References

Ali, O. et al. (2020). Phytoelicitor activity of Sargassum vulgare and Acanthophora spicifera extracts and their prospects for use in vegetable crops for sustainable crop production. J Appl Phyco, 33, 639–651. https://doi.org/10.1007/s10811-020-02309-8

Ali, O. et al. (2021). Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants, 10(3), 531. https://doi.org/10.3390/plants10030531

Badawi, M. A. et al. (2020). Improvement of wheat germination by using some biostimulants substances. J. of Plant Production, 11(2), 139–144.https://doi.org/10.21608/JPP.2020.79107

Copeland, L. O., & McDonald, M. B. (1995). Principles of Seed Science and Technology. (3rd ed.), Chapmann & Hall.

Ellis, R. H., & Roberts, E. H. (1980). Towards a rational basis for testing seed quality. Seed Production, 605–635.

Franzoni, G. et al. (2021). Maceration time affects the efficacy of borage extracts as a potential biostimulant on rocket salad. Agronomy, 11(11), 2182.https://doi.org/10.3390/agronomy11112182

Franzoni, G. et al. (2022). Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae, 8(3), 189. https://doi.org/10.3390/horticulturae8030189

Hric, P. et al. (2012). Alelopatické vzťahy trávnikových druhov tráv počas klíčenia [Allelopathic relationships of lawn grass species during germination]. In VII. vedecká konferencia doktorandov s medzinárodnou účasťou, konaná pri príležitosti Európskeho týždňa vedy. SUA (pp. 20–23).

Kovár, P. et al. (2017). Klíčenie osiva vybraných druhov rodu Festuca po aplikácii podorných prídavkov [Seed germination of selected species of the genus Festuca after the application of supporting additives]. In Osivo a sadba. Česká zemědělská univerzita (pp. 203–208).

Kovár, P. et al. (2015). Využitie podporných prípravkov pre zlepšenie klíčenia zŕn vybraných druhov kŕmnych tráv [The

use of supporting preparations to improve the germination of selected types of fodder grasses]. In Osivo a sadba. Česká zemědělská univerzita (pp. 175–180).

Lau, S. E. et al. (2022). Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov. Food, 2, 9. https://doi.org/10.1007/s44187-022-00009-5

Macháč, R. (2011). Vliv trinexapac-ethylu na kvalitu osiva vybraných druhů trav [Effect of trinexapac-ethyl on seed quality of selected grass species]. In Osivo a sadba. Česká zemědělská univerzita (pp. 88–92).

Makhaye, G. et al. (2021). Biopriming with seaweed extract and microbial-based commercial biostimulants influences seed germination of five Abelmoschus esculentus genotypes. Plants, 10(7),1327. https://doi.org/10.3390/plants10071327

Martinek, J. et al. (2011). Evaluation of Deschampsia caespitosa /L./ Beauv. competition ability in mixtures with main turfgrass species. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(5), 159–168.https://doi.org/10.11118/actaun201159050159

Mzibra, A.et al. (2021). Biostimulants derived from moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant. J Plant Growth Regul, 40, 353–370. https://doi.org/10.1007/s00344-020-10104-5

Nováková, A. (2004). Okrasné trávy. Grada Publishing.

Pazderů, K. (2009). Význam energie klíčení pro hodnocení kvality osiva [Significance of germination energy for seed quality assessment]. In Osivo a sadba. Česká zemědělská univerzita (pp. 56–60).

Przybysz, A. et al. (2014). Biological mode of action of a nitrophenolates-based biostimulant: a case study. Front. Plant Sci., 713(5). https://doi.org/10.3389/fpls.2014.00713

Rai, N. et al. (2021). Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Front. Sustain. Food Syst., 5, 54853. https://doi.org/10.3389/fsufs.2021.754853

Rayorath, P. et al. (2008). Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J Plant Growth Regul,27, 370–379. https://doi.org/10.1007/s00344-008-9063-6

Sangiorgio, D. et al. (2020). Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy, 10(6), 794.https://doi.org/10.3390/agronomy10060794

Statistica program/documentation: StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com

Štranc, P. et al. (2008). Výsledky pokusů s vybranými stimulátory v chmelařství. Moderní trendy v zemědělství [Results of experiments with selected stimulators in hop farming. Modern trends in agriculture]. Agromanuál, 4(6), 50–53.

Svobodová, M., & Šantrůček, J. (2003). Vztah jílku vytrvalého a lipnice lúční při zakládaní trávníků [The relationship between perennial ryegrass and Kentucky bluegrass in the establishment of lawns]. In Trávníky 2003. Agentura Bonus (p. 34).

Yadav, A. et al. (2024). Screening herbal extracts as biostimulants to increase germination, plant growth and secondary metabolite production in wheatgrass. Sci Rep, 14, 607. https://doi.org/10.1038/s41598-023-50513-6

Downloads

Published

2024-04-05

Issue

Section

Plant Science