Analysis of the mineral profile in the urine of dry and lactating cows: a case study


  • Tomáš Kanka Slovak University of Agriculture in Nitra
  • Ivan Imrich Slovak University of Agriculture in Nitra
  • Eva Mlyneková Slovak University of Agriculture in Nitra
  • Martina Pšenková Slovak University of Agriculture in Nitra
  • Martin Fik Slovak University of Agriculture in Nitra
  • Cyril Hrnčár Slovak University of Agriculture in Nitra
  • Michal Rolinec Slovak University of Agriculture in Nitra


Holstein cattle, bovine urine, trace elements, metabolic profile


In this case study, the urinary mineral profile of dairy cows was investigated. Determined urinary mineral concentrations were evaluated in relation to the production cycle (dry cows versus lactating cows) and were also compared to the physiological optimum. The study was carried out on twelve Holstein-Friesian dairy cows. Calcium, phosphorus, magnesium, sodium and urea concentrations were determined in urine samples. The urine of dry cows showed demonstrably higher concentrations of Ca, P, Na and Mg compared to the urine of lactating cows. Compared to the physiological optimum, significantly lower urinary Na concentrations were determined in all cows. This indicates a significant deficiency of Na in the diet of both dry cows and lactating cows. Marked differences between the minimum and maximum concentrations of all minerals studied in the urine of dairy cows were determined. The mineral profile obtained from urine samples can be an important diagnostic method for detecting preclinical stages of metabolic disorders. At the same time, urine sample collection is stress-free for dairy cows.


Bannink, A., Valk, H., & Van Vuuren, A. M. (1999) Intake and excretion of sodium, potassium, and nitrogen and the effects on urine production by lactating dairy cows. Journal of Dairy Science, 82 (5), 1008-1018. DOI:

Bertoni, G., Trevisi, E., & Lombardelli, R. (2009) Some new aspects of nutrition, health conditions and fertility of intensively reared dairy cows. Italian Journal of Animal Science, 8 (4), 491-518. DOI:

Dervishi, E., Zhang, G., Hailemariam, D., Mandal, R., Wishart, D. S., & Ametaj, B. N. (2018) Urine metabolic fingerprinting can be used to predict the risk of metritis and highlight the pathobiology of the disease in dairy cows. Metabolomics, 14, 1-15. DOI:

Dvořák, R. (2005) Výživa skotu z hledisek produkční a preventivní medicíny. Brno: Česká buiatrická společnost. (in Czech).

Elizondo Salazar, J. A., Ferguson, J. D., Beegle, D. B., Remsburg, D. W., & Wu, Z. (2013) Body phosphorus mobilization and deposition during lactation in dairy cows. Journal of Animal Physiology and Animal Nutrition, 97 (3), 502-514. DOI:

Eom, J. S., Kim, E. T., Kim, H. S., Choi, Y. Y., Lee, S. J., Lee, S. S., Kim, S. H., & Lee, S. S. (2021) Metabolomics comparison of serum and urine in dairy cattle using proton nuclear magnetic resonance spectroscopy. Animal Bioscience, 34(12), 1930. DOI:

Goff, J. P. (2006) Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders. Animal feed science and technology, 126 (3-4), 237-257. DOI:

Hanušovský, O., Šimko, M., & Bíro, D. (2017) Kontinuálne sledovanie parametrov bachorového prostredia využitím prenosu dát nízkofrekvenčným signálom. Nitra: Slovenská poľnohospodárska univerzita v Nitre. (in Slovak).

Holtenius, K., Kronqvist, C., Briland, E., & Spörndly, R. (2008) Magnesium absorption by lactating dairy cows on a grass silage-based diet supplied with different potassium and magnesium levels. Journal of Dairy Science, 91 (2), 743-748. DOI:

Juráček, M., Vašeková, P., Massányi, P., Kováčik, A., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., Kolláthová, R., Mixtajová, E., & Kalúzová, M. (2021) The effect of dried grape pomace feeding on nutrients digestibility and serum biochemical profile of wethers. Agriculture, 11 (12), 1194. DOI:

Kabir, M., Hasan, M. M., Tanni, N. S., Parvin, M. S., Asaduzzaman, M., Ehsan, M. A., & Islam, M. T. (2022) Metabolic profiling in periparturient dairy cows and its relation with metabolic diseases. BMC Research Notes, 15 (1), 231. DOI:

Kahn, C. M. (2005) The Merck Veterinary Manual 9th ed. White house station, NJ, USA, Merck & CO.

Kantíková, M., Balážik, T. (2003) Diagnostika metabolických porúch alebo prevencia je vždy lacnejšia. Slovenský chov, vol. 8 (7), 39-40. (in Slovak).

Kemp, A. (1964) Sodium requirement of milking cows: balance trials with cows on rations of freshly mown herbage and on winter rations. Netherlands Journal of Agricultural Science, 12 (4), 263-280. DOI:

Kimura, K. A. Y. O. K. O., Reinhardt, T. A., & Goff, J. P. (2006) Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. Journal of Dairy Science, 89 (7), 2588-2595. DOI:

Kraft, W., Dürr, U. M. (2013) Klinische Labordiagnostik in der Tiermedizin.Stuttgart: Schattauer Verlag. (in German).

LeBlanc, S. J., Lissemore, K. D., Kelton, D. F., Duffield, T. F., & Leslie, K. E. (2006) Major advances in disease prevention in dairy cattle. Journal of Dairy Science, 89 (4), 1267-1279. DOI:

Mihok, T., Bujňák, L., Hreško Šamudovská, A., Maskaľová, I., Zigo, F. (2021) Lipid metabolism in the cattle in different stages of reproductive cycle, Asian Journal of Agriculture and Food Sciences, 9 (6), 237-241. DOI:

Moreira, V. R., Zeringue, L. K., Williams, C. C., Leonardi, C., & McCormick, M. E. (2009) Influence of calcium and phosphorus feeding on markers of bone metabolism in transition cows. Journal of Dairy Science, 92 (10), 5189-5198. DOI:

Rolinec, M., Bíro, D., Šimko, M., Juráček, M., Hanušovský, O., Schubertová, Z., Chadimová, L., & Gálik, B. (2021) Grape pomace ingestion by dry cows does not affect the colostrum nutrient and fatty acid composition. Animals, 11 (6), 1633. DOI:

Schröder, B., & Breves, G. (2006) Mechanisms and regulation of calcium absorption from the gastrointestinal tract in pigs and ruminants: comparative aspects with special emphasis on hypocalcemia in dairy cows. Animal Health Research Reviews, 7 (1-2), 31-41. DOI:

Slanina, Ľ., & Sokol, J. (1991) Vademecum veterinárneho lekára. Bratislava: Príroda, (in Slovak).

Zábranský, L., Galik, B., Poborska, A., Hadačova, V., Šoch, M., Lad, F., Petrašková, E. & Frejlach, T. (2019) Influence of probiotic feed supplements on functional status of rumen. Journal of Central European Agriculture, 20 (4), 1044-1054. DOI:

Zábranský, L., Poborská, A., Gálik, B., Šoch, M., Brož, P., Kantor, M., Kernerová, N., Řezáč, I., Rolinec, M., Hanušovský, O., Strnad, L. & Havrdová, N. (2022) Influence of probiotic strains bifidobacterium, lactobacillus, and enterococcus on the health status and weight gain of calves, and the utilization of nitrogenous compounds. Antibiotics, 11 (9), 1273. Doi:

Zhang, G., Mandal, R., Wishart, D. S., & Ametaj, B. N. (2021) A multi-platform metabolomics approach identifies urinary metabolite signatures that differentiate ketotic from healthy dairy cows. Frontiers in Veterinary Science, 8, 595983. DOI:






Animal Science