Spectroscopic characterization of soil organic matter quality in intensively used Chernozems


  • Lubos Sedlak Faculty of AgriSciences Mendelu Brno
  • Kateřina Boturová
  • Lubica Pospíšilová
  • Ladislav Menšík
  • Tomáš Šimon


humic acids, chernozem, DRIFT and UV-VIS spectroscopy


Chernozems are considered highly productive soils, which are strongly affected by intensive management, erosion processes, and degradation. Three different soil types were classified according to Němeček et al. (2011) along the transect in the field – Calcic Chernozem (control site); Calcaric Regosol (erosion site); and Calcic Chernozem Colluvic (accumulation site). Soil organic matter quality was evaluated using infrared and UV-VIS spectroscopic methods. Humic acids (HAs) were isolated from all three soil samples according to the standard IHSS method. DRIFT spectroscopy (diffuse reflectance infrared Fourier transform spectroscopy) was applied to evaluate HAs chemical composition and hydrophobicity. Both parameters can better characterize HAs stability against microbial degradation, reactivity, and wettability. Results showed that the humification degree was the highest in Calcic Chernozem Colluvic (accumulation site). Less humified were HAs in Calcaric Regosol (erosion site). Higher content of aliphatic labile and hydrophilic groups was in HAs from Calcaric Regosol (erosion site). The content of aromatic stable and resistant components was higher in HAs from Calcic Chernozem (control site) and Calcic Chernozem Colluvic (accumulation site). The highest hydrophobicity index was in HAs from Calcic Chernozem Colluvic (accumulation site). The HAs chemical composition and hydrophobicity are crucial in soil productivity and organic matter stability in a changing environment.


Biney J.K.M. (2022). Verifying the predictive performance for soil organic carbon when employing field Vis-NIR spectroscopy and satellite imagery obtained using two different sampling methods. Computers and Electronics in Agriculture 194, 106796. https:/doi.org/10.1016/j.compag.2202.106796.

Coates J.D., Chakraborty R., O'Connor S.M., Schmidt C. Thieme J. (2000). The geochemical effects of microbial humic substances reduction. Acta Hydrochimica et Hydrobiologica, vol. 28(7), 420-427. ISSN: 0323-4320. EISSN: 1521-401X. DOI http://dx.doi.org/10.1002/1521-401x (20017)28:7.

Capriel P. 1997. Hydrophobicity of organic matter in arable soils: influence of management. Eur. J. Soil Sci. 48, 457–462.

Hayes M. H. B., (1985). Extraction of humic substances from soil. In: Aiken, G.R., Wershaw, R. L., Mcknight, D. M., Mccarthy, P. (Eds.) Humic substances in soil, sediments and water. John Wiley, N. Y. 329–362.

Hayes M. H. B. & Malcolm R. M. 2001. Consideration of compositions and aspects of structures of humic substances. In: Humic substances and chemical contaminants. C. E. CLAPP (EDS.), Soil Sci. of America, Madison, WI: 3–39.

Chen Y., Senesi N. & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 41: 352–358.

Chen H., Xu L., Gu J., Meng F., Qiao H. (2022). A quasi-qualitative strategy for FT-NIR discriminant prediction: a case study on rapid detection of soil organic matter. Chemometrics and Intelligent Laboratory Systems 224 (2022) 104547. https:/doi.org/10.1016/j.chemolab.2202.104547.

Del Vecchio & Blough, N. V. (2004). On the origin of the optical properties of Humic Substances. Environ. Sci. Technol. 38: 3885–3891.

Demyan M.S., Rasche F., Schulz E., Breulmann M., Müller T., Cadisch G. (2012). Use of specific peaks obtained by diffuse reflectance Fourier transforms mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 63(2):189–199.

Ellerbrock R.H., Gerke H.H., Bachmann J., Goebel M-O. (2005). Composition of organic matter fractions for explaining the wettability of three forest soils. Soil Sci. Soc. Am. J. 69, 57–66.

Griffiths P.R., De Haseth J.A. 2007. Fourier transformed infrared spectroscopy Wiley-Interscience, New Jersey.

IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, Italy. ISBN 978-92-5-108369-7.

Kononova, M.M. & Bělčiková, N.P. (1963). Organičeskoje veščestvo počvy (Soil organic matter). Moscow State University, Moscow, 228–234. (In Russian).

Kumada K. 1987. Chemistry of soil organic matter. Tokyo: Japan Scientific, 270p.

Margenot A.J., Calderón F.J., Bowles T.M., Parikh S.J., Jackson L.E. (2015). Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Sci. Soc. Am. J. 79, 772–782.

Merlo, M. N. et al. (2022). Microbiological Properties in Cropping Systems and Their Relationship with Water Erosion in the Brazilian Cerrado. Water [online]. 14(4). ISSN 2073-4441. Available at: https://doi.org/10.3390/w14040614

Nelson D.W. & Sommers L.E. (1996). Total carbon, organic carbon, and organic matter. In: Sparks D.L. et al. (eds): Methods of Soil Analysis. Part 3: 961-1010.

Pospíšilová L., Formánek P., Kučerík J., Liptaj T., Lošák T., Martensson A. (2011). Land use effects on carbon quality and soil biological properties in Eutric Cambisol. Acta Agriculturae Scandinavica, Section B - Plant & Soil Science 61/7, 661-669.

Pospíšilová L., Vlček V., Hybler V., Hábová M., Jandák J. (2016). Standardní analytické metody a kritéria hodnocení fyzikálních, agrochemických, biologických a hygienických parametrů půd. Brno: Mendelova univerzita v Brně, 123 p. ISBN 978-80-7509-438-4.

Stevenson F. J. (1982). Humus chemistry - genesis, composition, reactions. New York: J. Wiley Inter science Publication. 445p.

SU Zheng-An, Zhang J.H., Nie X. J. (2010). Effect of Soil Erosion on Soil Properties and Crop Yields on Slopes in the Sichuan Basin, China. Pedosphere [online]. 20(6), 736-746. ISSN 10020160. Available at: https://doi.org/10.1016/S1002-0160 (10)60064-1

Šarapatka B., Cap L., Bila, P. (2018). The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma. 2018(314), 20-26. ISSN 0016-7061. Dostupné z: https://doi.org/10.1016/j.geoderma.2017.10.037

Šimon T. (2008). The influence of long-term organic and mineral fertilization on soil organic matter. Soil and Water Research, vol. 3(2), 41-51.

Tinti A., Tugnoli V., Bonora S., Francioso O. (2015). Recent application of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review. Journal of Central European Agriculture 16 (1), 1-22.

Viscarra-Rossel R.A, Jeo Y.S., Odeh I.O.A., McBratney A.B. 2008. Using a legacy soil sample to develop a Mid-IR spectral library. Aust. J. Soil Res. 46 (1), 1-16.

Viscarra-Rossel R.A. & Bouma J. (2016). Soil sensing: A new paradigm for agriculture, Agricultural Systems, 148, (C), 71-74

Xie S., Ding F., Chen S., Wang X., Li Y., Ma K. (2022). Prediction of soil organic matter content based on characteristic band selection method. Spectrochimica Acta Part A: Molecular and Biomolecular spectroscopy 273, 120949. https:/doi.org/10.1016/j.saa.2202.120949.






Plant Science