Genetic and Genomic Evaluation of Health Traits in Cattle Breeding: A Review

Authors

  • Monika Chalupková Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources,, Institute of Nutrition and Genomic, Trieda Andreja Hlinku 2, 949 76 Nitra
  • Nina Moravčíková Slovak University of Agriculture in Nitra, Institute of Nutrition and Genomics, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
  • Adrián Halvoník Slovak University of Agriculture in Nitra, Institute of Nutrition and Genomics, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
  • Radovan Kasarda Slovak University of Agriculture in Nitra, Institute of Nutrition and Genomics, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.

Keywords:

health traits, genetic evaluation, genomic evaluation

Abstract

This review aims to highlight the importance of genetic evaluation of health traits. In the past, cattle breeding primarily focused on milk production traits, but nowadays, there is a shift towards considering health traits and longevity. Cows are mainly affected by four diseases: mastitis, claw diseases, metabolic diseases, and reproductive diseases. These ailments negatively impact milk production, impair reproduction, and incur high treatment costs. In 2012, the  ICAR implemented guidelines for the  genetic improvement of health traits, establishing a system for recording diseases and their key indicators. This system includes a comprehensive key (>900 diagnoses), a reduced key (60 to 100 diagnoses), and a simple key (10 diagnoses). Genetic evaluation of health traits started in the mid-70s in Nordic countries. Previously, Czechoslovakia had a system for evaluating and classifying the overall health of breeding cows and bulls. In Slovakia, genetic evaluations for milk production traits, somatic cell score, calving ease, and longevity are performed. However, these traits are not included in the selection index along with health traits, for which genetic evaluations are not made. Two selection indexes are currently used: the  Slovak Holstein Index, which takes into account milk production traits and type traits at 60% and 40% respectively, and the Slovak Production Index, which takes into account milk production in kilograms, fat production in kilograms, and protein production in kilograms.

References

Abdelharith, H. (2019). (Co)variance and genetic parameters of retained placenta and stillbirth for Friesian herd using multiparity threshold models. Egyptian Journal of Animal Production, 56(2), 47–54. https://doi.org/10.21608/EJAP.2019.92996

Abdelsayed, M. et al. (2017). Genetic parameters for health traits using data collected from genomic information nucleus herds. Journal of Dairy Science, 100(12), 9643–9655. https://doi.org/10.3168/jds.2017-12960

Ahdb. (2024). Profitable Lifetime Index £PLI. Retrieved 2024-04-20 from https://ahdb.org.uk/knowledge-library/profitable-lifetime-index-pli

Ajose, D. J. et al. (2022). Combating bovine mastitis in the dairy sector in an era of antimicrobial resistance: Ethno-veterinary medicinal option as a viable alternative approach. Frontiers in Veterinary Science, 9(April2022), 800322. https://doi.org/10.3389/fvets.2022.800322

Alcantara, L. M. et al. (2022). Conformation traits of Holstein cows and their association with a Canadian economic selection index. Canadian Journal of Animal Science, 102(3), 490–500. https://doi.org/10.1139/cjas-2022-0013

Armengol, R., & Fraile, L. (2018). Descriptive study for culling and mortality in five high-producing Spanish dairy cattle farms (2006–2016). Acta Veterinaria Scandinavica, 60(1), 1–11. https://doi.org/10.1186/s13028-018-0399-z

Berry, D. P. et al. (2011). Genetics of animal health and disease in cattle. Irish Veterinary Journal, 64(1), 1–10. https://doi.org/10.1186/2046-0481-64-5

Boujenane, I. (2017). Reasons and risk factors for culling of Holstein dairy cows. Journal of Livestock Science and Technologies, 5(1), 25–31. https://doi.org/10.22103/jlst.2017.1661

Candrák, J., & Lichanec, I. (2023). Estimation of breeding values for conformation traits in Slovak Holstein cattle (in Slovak). Holstein Slovakia. https://www.holstein.sk/files/lh/05-2022/phtyp-05-2023.pdf

Chalupková, M. et al. (2023). Estimation of genetic parameters of claw conformation in Holstein and Slovak Spotted breeds. Acta Zootechnica et Fytotechnica, 26(1), 55–60. https://doi.org/10.15414/afz.2023.26.01.55-60

Charfeddine, N. et al. (2018). Genetic and genomic evaluation of claw health traits in Spanish dairy cattle. Proceedings of the 2018 Interbull Meeting, 53(2018), 1–5.

Chegini, A. et al. (2018). Genetic correlation estimates between milk production traits, mastitis, and different measures of somatic cells in Holstein cows. Animal Production Science, 59(6), 1031–1038. https://doi.org/10.1071/AN17325

Cogent. (2021). Changes will help breed healthier dairy cows. Retrieved 2024-04-153-30, from https://www.cogentuk.com/news/changes-will-help-breed-healthier-dairy-cows

Costa, A. et al. (2019). Genetic associations of lactose and its ratios to other milk solids with health traits in Austrian Fleckvieh cows. Journal of Dairy Science, 102(5), 4238–4248. https://doi.org/10.3168/jds.2018-15883

Croué, I. et al. (2017). Genetic evaluation of claw health traits accounting for potential preselection of cows to be trimmed. Journal of Dairy Science, 100(10), 8197–8207. https://doi.org/10.3168/jds.2017-13002

Dallago, M. G. et al. (2021). Keeping dairy cows for longer: A critical literature review on dairy cow longevity in high milk-producing countries. Animals, 11(3), 1–25. https://doi.org/10.3390/ani11030808

Dash, S. K. et al. (2014). Evaluation of efficiency of sire model and animal model in Holstein Friesian crossbred cattle considering first lactation production and fertility traits. Veterinary World, 7(11), 933–937. https://doi.org/10.14202/vetworld.2014.933-937

De Monte, E. et al. (2020). Evaluation of the systematic recording of diagnostic data in the Valdostana cattle. Italian Journal of Animal Science, 19(1), 1253–1263. https://doi.org/10.1080/1828051X.2020.1833767

De Vries, A., & Marcondes, M. I. (2020). Review: Overview of factors affecting productive lifespan of dairy cows. Animal, 14(s1), s155–s164. https://doi.org/10.1017/S1751731119003264

Dziekiewicz-Mrugasiewicz, M., & Wierzbicka, M. (2021). The reasons of culling of cattle in dairy cows herd – A review. Polish Journal of Natural Science, 36(2), 197–209. https://doi.org/10.31648/pjns.7297

Egger-Danner, C. et al. (2015). Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal, 9(2), 191–207. https://doi.org/10.1017/S1751731114002614

Fessenden, B. et al. (2020). Validation of genomic predictions for a lifetime merit selection index for the US dairy industry. Journal of Dairy Science, 103(11), 10414–10428. https://doi.org/10.3168/jds.2020-18502

Garvey, M. (2022). Lameness in dairy cow herds: Disease aetiology, prevention and management. Dairy, 3(1), 199–210. https://doi.org/10.3390/dairy3010016

Gernand, E. et al. (2012). Incidences of and genetic parameters for mastitis, claw disorders, and common health traits recorded in dairy cattle contract herds. Journal of Dairy Science, 95(4), 2144–2156. https://doi.org/10.3168/jds.2011-4812

Gonzalez-Peña, G. et al. (2020). Genomic evaluation for wellness traits in US Jersey cattle. Journal of Dairy Science, 103(2), 1735–1748. https://doi.org/10.3168/jds.2019-16903

Govignon-Gion, A. et al. (2016). Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds. Animal, 10(4), 558–565. https://doi.org/10.1017/S1751731115002529

Guarini, A. R. et al. (2019). Genetics and genomics of reproductive disorders in Canadian Holstein cattle. Journal of Dairy Science, 102(2), 1341–1353. https://doi.org/10.3168/jds.2018-15038

Gutierrez-Reinoso, M. A. et al. (2021). Genomic analysis, progress and future perspectives in dairy cattle selection: a review. Animals, 11(3), 599. https://doi.org/10.3390/ani11030599

Hardie, L. C. et al. (2022). Genetic parameters and associations of national evaluation with breeding values for health traits in US organic Holstein cows. Journal of Dairy Science, 105(1), 495–508. https://doi.org/10.3168/jds.2021-20588

Henderson, C. R. (1988). Theoretical basis and computational methods for a number of different animal models. Journal of Dairy Science, 83(5), 1115–1124. https://doi.org/10.1016/S0022-0302(88)79974-9

Heringstad, B. et al. (2018). Invited review: Genetics and claw health: Opportunities to enhance claw health by genetic selection. Journal of Dairy Science, 101(6), 4801–4821. https://doi.org/10.3168/jds.2017-13531

Hu, H. et al. (2021). Analysis of longevity traits in Holstein cattle: a review. Frontiers in Genetics, 12(August 2021), 695543. https://doi.org/10.3389/fgene.2021.695543

Interbull. (2023). Online. National genomic evaluation forms provided by countries. Retrieved 2024-05-31 from https://interbull.org/ib/nationalgenoforms

Jamrozik, J. et al. (2016). Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins. Journal of Dairy Science, 99(3), 1990–1998. https://doi.org/10.3168/jds.2015-10505

Kasarda, R. (2007). Analýza mliekovej úžitkovosti kráv vo vzťahu k špecifickej kombinačnej nadväznosti v chove slovenského strakatého plemena (In Slovak). Acta fytotechnica et zootechnica, 10(3), 63–66.

Kašná et al. (2019a). Genetic evaluation of reproductive and metabolic disorders and displaced abomasum in Czech Holstein cows. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(4), 939–946. https://doi.org/10.11118/actaun201967040939

Kašná, E. (2019b). Šlechtění na zvyšení odolnosti proti nemocem (In Czech). In Zavadilová, L. et al. Průvodce šlechtením dojného skotu proti nemocem (pp. 6–20). Agrární komara České republiky.

Kašná, E. et al. (2023). The most common reproductive disorders of cows in Holstein cattle breeding. Czech Journal of Animal Science, 68(11), 433–442. https://doi.org/10.17221/86/2023-CJAS

Kleknerová, N., & Candrák, J. (2012). Selekčný index holštajnského plemena v Slovenskej republike a v chovateľsky vyspelých krajinách (in Slovak). Interaktívna konferencia mladých vedcov 2012. Banská Bystrica, Preveda.

Koeck, A. et al. (2012). Health recording in Canadian Holsteins: Data and genetic parameters. Journal of Dairy Science, 95(7), 4099–4108. https://doi.org/10.3168/jds.2011-5127

Koeck, A. et al. (2015). Farmer-observed health data around calving – Genetic parameters and association with veterinarian diagnoses in Austrian Fleckvieh cows. Journal of Dairy Science, 98(4), 2753–2758. https://doi.org/10.3168/jds.2014-8900

Krpálková, L. et al. (2019). The importance of hoof health in dairy production. Czech Journal of Animal Science, 64(3), 107–117. https://doi.org/10.17221/27/2018-CJAS

Krupová, Z. et al. (2019). Udder and claw-related health traits in selection of Holstein cows. Annals of Animal Science, 19(3), 647–661. https://doi.org/10.2478/aoas-2019-0037

Krupová, Z. et al. (2024). Udder, claw, and reproductive health in genomic selection of the Czech Holstein. Animals, 14(6), 864. https://doi.org/10.3390/ani14060864

Malchoidi, F. et al. (2020). Symposium review: Multiple-trait single-step genomic evaluation for hoof health. Journal of Dairy Science, 103(6), 5346–5353. https://doi.org/10.3168/jds.2019-17755

Mézsáros, G. et al. (2006). Hodnotenie rizika vyradenia kráv slovenského pinzgauského plemena. Acta fytotechnica et zootechnica, 9(Special), 162–164.

Misztal, I. et al. (2011). Approximation of genomic accuracies in single-step genomic evaluation. Proceedings of the 2011 Interbull meeting, 44(2018), 103–109.

Neuenschwander, O. F. T. et al. (2013). Genetic parameters for producer-recorded health data in Canadian Holstein cattle. Animals, 6(4), 571–578. https://doi.org/10.1017/S1751731111002059

Ødegård, C. et al. (2013). Genetic analyses of claw health in Norwegian Red cows. Journal of Dairy Science, 96(11), 7274–7283. https://doi.org/10.3168/jds.2012-6509

Oliveira Junior, et al. (2021). Estimated genetic parameters for all genetically evaluated traits in Canadian Holsteins. Journal of Dairy Science, 104(8), 9002–9015. https://doi.org/10.3168/jds.2021-20227

Pahlavan, R. et al. (2023). Scaling factor assessment in single-step GBLUP evaluations for small genotyped populations: A case study on Iranian Holstein cattle. Livestock Science, 274(1). https://doi.org/10.1016/j.livsci.2023.105287

Parker Gaddis, L. K. et al. (2014). Genomic selection for producer-recorded health event data in US dairy cattle. Journal of Dairy Science, 97(5), 3190–3199. https://doi.org/10.3168/jds.2013-7543

Parker Gaddis, L. K. et al. (2020). Symposium review: Development, implementation, and perspectives of health evaluations in the United States. Journal of Dairy Science, 103(6), 5354–5365. https://doi.org/10.3168/jds.2019-17687

Pérez-Cabal, M. A., & Charfeddine, N. (2015). Models for genetic evaluations of claw health traits in Spanish dairy cattle. Journal of Dairy Science, 98(11), 8186–8194. https://doi.org/10.3168/jds.2015-9562

Pfeiffer, C. et al. (2015). Short communication: Genetic relationships between functional longevity and direct health traits in Austrian Fleckvieh cattle. Journal of Dairy Science, 98(10), 7380–7383. https://doi.org/10.3168/jds.2015-9632

Pritchard, T. et al. (2013). Genetic parameters for production, health, fertility, and longevity traits in dairy cows. Animal, 7(1), 34–46. https://doi.org/10.1017/S1751731112001401

Pryce, J. E. et al. (2016). Invited review: Opportunities for genetic improvement of metabolic diseases. Journal of Dairy Science, 99(9), 6855–6873. https://doi.org/10.3168/jds.2017-13531

Pšenica, J. et al. (2007). Selekcia býkov podľa zdravotných tried (1. časť) (In Slovak). Slovenský chov, 12(1), 36–37.

Rekaya, R. et al. (2001). Threshold model for misclassified binary responses with applications to animal breeding. Biometrics, 57(4), 1123–1129. https://doi.org/10.1111/j.0006-341x.2001.01123.x

Rilanto, T. et al. (2020). Culling reasons and risk factors in Estonian dairy cows. BMC Veterinary Research, 16(1), 1–16. https://doi.org/10.1186/s12917-020-02384-6

Rostellato, R. et al. (2022). Factors affecting true and functional productive lifespan in Italian Holstein-Friesian cows. Italian Journal of Animal Science, 22(1), 1268–1276. https://doi.org/10.1080/1828051X.2022.2105264

Sawa, A., & Bogucki, M. (2010). Effect of some factors on cow longevity. Archiv für Tierzucht, 53(4), 403–414. https://doi.org/10.5194/aab-53-403-2010

Schefers, J. M., & Weigel, K. A. (2012). Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Animal Frontiers, 2(1), 4–9. https://doi.org/10.2527/af.2011-0032

Schneider, H. et al. (2023). A genomic assessment of the correlation between milk production traits and claw and udder health traits in Holstein dairy cattle. Journal of Dairy Science, 106(2), 1190–1205. https://doi.org/10.3168/jds.2022-22312

Sdiri, C. H. et al. (2023). Assessment of genetic and health management of Tunisian Holstein dairy herds with a focus on longevity. Genes, 14(6), 1–13. https://doi.org/10.3390/genes14030670

Semex. (2024). Online. Imunity +. Retrieved 2023-12-31 from https://www.semex.com/i?lang=en&page=immunityfab

Shabalina, T. et al. (2020). Influence of common health disorders on the length of productive life and stayability in German Holstein cows. Journal of Dairy Science, 103(1), 583–596. https://doi.org/10.3168/jds.2019-16985

Siatka, K. et al. (2020). Longevity of Holstein-Friesian cows and some factors affecting their productive life – a review. Animal Science Papers and Reports, 38(2), 107–116.

Stock, K. F. et al. (2013). Standardization of health data. ICAR guidelines including health key. In Proceedings of the ICAR Conference 2013. ICAR.

Strapák, P. et al. (2004). Nepriame užitkové vlastnosti (In Slovak). Slovenská poľnohospodárska univerzita v Nitre.

Strapák, P. et al. (2011). Hodnotenie priebehu pôrodov kráv na Slovensku (In Slovak). Slovenská poľnohospodárska univerzita v Nitre.

Strapáková, E. et al. (2016). Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle. Archives Animal Breeding, 59(3), 329–335. https://doi.org/10.5194/aab-59-329-2016

Strapáková, E. et al. (2019). Genetic trend of length of productive life in Holstein and Slovak Simmental cattle in Slovakia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(5). https://doi.org/10.11118/actaun201967051227

Štrbac, L. et al. (2023). Mathematical modeling and software tools for breeding value estimation based on phenotypic, pedigree and genomic information of Holstein Friesian cattle in Serbia. Animals, 13(4), 597. https://doi.org/10.3390/ani13040597

Terakado, N. et al. (2021). Comparison of methods for predicting genomic breeding values for growth traits in Nellore cattle. Tropical Animal Health and Production, 53(3), 349. https://doi.org/10.1007/s11250-021-02785-1

Uribe, H. et al. (2022). Estimation of genetic parameters for subclinical mastitis using a threshold model in first parity dairy cows under pasture-based systems of Los Ríos Region in Chile. Austral Journal of Veterinary Sciences, 54(1), 17–21. http://dx.doi.org/10.4067/S0719-81322022000100017

Van der Spek, D. et al. (2015). Genetic relationships between claw health traits of dairy cows in different parities, lactation stages, and herds with different claw disorder frequencies. Journal of Dairy Science, 98(9), 6564–6571. https://doi.org/10.3168/jds.2015-9561

VanRaden, P. M., & Sullivan, P. G. (2010). International genomic evaluation methods for dairy cattle. Genetics Selection Evolution, 42(1), 1–9. https://doi.org/10.1186/1297-9686-42-7

Vazquez, I. et al. (2009). Assessment of Poisson, logit, and linear models for genetic analysis of clinical mastitis in Norwegian Red cows. Journal of Dairy Science, 92(2), 739–748. https://doi.org/10.3168/jds.2008-1325

Vikingsgenetics. (2024). Online. NTM Innovative breeding. Retrieved 2024-04-22 from https://innovativebreeding.vikinggenetics.com/brochures/ntm/ntm-full-guide/?page=4

Vlček, M., & Kasarda, R. (2016). Effect of the claw disorders on production performance in dairy cattle. Acta Agraria Debreceniensis, (67), 15–19. https://doi.org/10.34101/actaagrar/67/1745

Vukasinovic, N. et al. (2017). Development of genetic and genomic evaluation for wellness traits in US Holstein cows. Journal of Dairy Science, 100(1), 428–438. http://dx.doi.org/10.3168/jds.2016-11520

Vukasinovic, N. et al. (2022). Genetic control of wellness in dairy cattle. In Kukovics, S. (Ed.), Animal Husbandry. IntechOpen.

Warner, D. et al. (2022). Keeping profitable cows in the herd: A lifetime cost-benefit assessment to support culling decisions. Animal, 16(10), 1–9. https://doi.org/10.1016/j.animal.2022.100628

Weigel, K. A. et al. (2017). A 100-Year Review: Methods and impact of genetic selection in dairy cattle – From daughter–dam comparisons to deep learning algorithms. Journal of Dairy Science, 100(12), 10234–10250. https://doi.org/10.3168/jds.2017-12954

Wientjes, Y. C. et al. (2022). The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture. Genetics Selection Evolution, 54(1), 19. https://doi.org/10.1186/s12711-022-00709-7

Zavadilová, L. et al. (2020). Breeding values prediction for clinical mastitis in Czech Holstein cattle. Acta fytotechnica et zootechnica, 23(Monothematic Issue), 233–240. https://doi.org/10.15414/afz.2020.23.mi-fpap.233-240

Zavadilová, L. et al. (2021). Health traits in current dairy cattle breeding: A review. Czech Journal of Animal Science, 66(7), 235–250. https://doi.org/10.17221/163/2020-CJAS

Downloads

Published

2024-10-15

Issue

Section

Animal Science