Effect of grape pomace feeding on fattening parameters and fatty acids profile in geese

Authors

  • Michal Rolinec Slovak University of Agriculture in Nitra
  • Stanislava Drotárová Slovak University of Agriculture in Nitra
  • Jakub Vyšlan Slovak University of Agriculture in Nitra
  • Branislav Gálik Slovak University of Agriculture in Nitra
  • Milan Šimko Slovak University of Agriculture in Nitra
  • Miroslav Juráček Slovak University of Agriculture in Nitra
  • Ondrej Hanušovský Slovak University of Agriculture in Nitra
  • Mária Kalúzová Slovak University of Agriculture in Nitra
  • Eva Mixtajová Slovak University of Agriculture in Nitra
  • Pavol Brek Slovak University of Agriculture in Nitra

Keywords:

grape pomace, fatty acids, geese, abdominal fat

Abstract

It was published, that grape pomace has a positive effect on the animal organism and is also a rich source of fatty acids. The inclusion of grape pomace in the geese feed mixture was the main objective of the following experiment. The addition of grape pomace into the feed mixture was used to investigate to what extent will affect the fattening parameters of geese and the profile of fatty acids analysed from the abdominal fat of geese. The experiment was carried out on 20 geese (Czech goose breed). Two groups were formed to obtain the same average weight. The average weight of the experimental group at the beginning was 1857 ± 196 g. The average weight of the control group was 1872 ± 248 g. For 49 days, both groups were fed a commercial complete feed mixture for geese fattening while in the experimental group 1% of the feed mixture was replaced by dried grape pomace. The average weight of geese of the control group at the end of fattening was 5579 ± 770 g and of the experimental group 5752 ± 752 g. The addition of dried grape pomace to the feed mixture in the fattening of geese increased the average daily weight gain of geese by 5.2% (P˃0.05), liver weight by 22.5% (P˂0.05) and increased the content of monounsaturated fatty acids by 2.5% (P˃0.05), especially oleic acid by 3.0% (P˃0.05). A reduced content of polyunsaturated fatty acids by 1.5% (P˃0.05) and decreased saturated fatty acid content by 3.2% (P˃0.05) was detected in the experimental group. It can be concluded that the addition of grape pomace affected the liver weight of fattened gees, while the effect on fatty acids composition was insignificant.

References

Alagawany, M., Elnesr, S. S., Farag, M. R., El-Hack, A., Mohamed, E., Khafaga, A. F., & Dhama, K. (2019). Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals, 9(8), 573. https://doi.org/10.3390/ani9080573

Azizi, M., Seidavi, A. R., Ragni, M., Laudadio, V., & Tufarelli, V. (2018). Practical applications of agricultural wastes in poultry feeding in Mediterranean and Middle East regions. Part 1: Citrus, grape, pomegranate and apple wastes. World's Poultry Science Journal, 74(3), 489-498. https://doi.org/10.1017/S0043933918000478

Biesiada-Drzazga, B. (2014). Growth and slaughter value of W11, W33 and W31 White Kołuda geese®. European Poultry Science, 78. https://doi.org/10.1399/eps.2014.44

Bravi, M., Spinoglio, F., Verdone, N., Adami, M., Aliboni, A., d’Andrea, A., & Ferri, D. (2007). Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2. Optimisation of the extraction conditions. Journal of Food Engineering, 78(2), 488-493. https://doi.org/10.1016/j.jfoodeng.2005.10.017

Brenes, A., Viveros, A., Goñí, I., Centeno, C., Sayago-Ayerdy, S. G., Arija, I., & Saura-Calixto, F. (2008). Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poultry science, 87(2), 307-316. https://doi.org/10.3382/ps.2007-00297

Calder, P. C. (2015). Functional roles of fatty acids and their effects on human health. Journal of parenteral and enteral nutrition, 39, 18S-32S. https://doi.org/10.1177/0148607115595980

de Souza, V. B., Thomazini, M., de Carvalho Balieiro, J. C., & Fávaro-Trindade, C. S. (2015). Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing, 93, 39-50. https://doi.org/10.1016/j.fbp.2013.11.001

Gil‐Sánchez, I., Ayuda‐Durán, B., González‐Manzano, S., Santos‐Buelga, C., Cueva, C., Martín‐Cabrejas, M. A., & Bartolomé, B. (2017). Chemical characterization and in vitro colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, 97(10), 3433-3444. https://doi.org/10.1002/jsfa.8197

Gómez-Brandón, M., Lores, M., Insam, H., & Domínguez, J. (2019). Strategies for recycling and valorization of grape marc. Critical reviews in biotechnology, 39(4), 437-450. https://doi.org/10.1080/07388551.2018.1555514

Haščík, P., Čech, M., Čuboň, J., Bobko, M., Arpášová, H., Pavelková, A., & Čeryová, N. (2021). Effect of grape pomace supplementation on meat performance of broiler chicken ross 308. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 140-144. https://doi.org/10.15414/jmbfs.2020.10.1.140-144

Hosseini-Vashan, S. J., Safdari-Rostamabad, M., Piray, A. H., & Sarir, H. (2020). The growth performance, plasma biochemistry indices, immune system, antioxidant status, and intestinal morphology of heat-stressed broiler chickens fed grape (Vitis vinifera) pomace. Animal Feed Science and Technology, 259, 114343. https://doi.org/10.1016/j.anifeedsci.2019.114343

Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International journal of molecular sciences, 18(12), 2589. https://doi.org/10.3390/ijms18122589

Kolláthová, R., Gálik, B., Halo, M., Kováčik, A., Hanušovský, O., Bíro, D., & Šimko, M. (2020). The effects of dried grape pomace supplementation on biochemical blood serum indicators and digestibility of nutrients in horses. Czech Journal of Animal Science, 65(2), 58-65. https://doi.org/10.17221/181/2019-CJAS

Kolláthová, R.; Gálik, B.; Juráček, M.; Hanušovský, O.; Bíro, D.; Rolinec, M.; Šimko, M. (2021). The impact of the year of harveting and lyophylization of the mineral profile of grape pomace. Journal of Hygienic Engineering and Design, 34, 161–166.

Liu, H. W., & Zhou, D. W. (2013). Influence of pasture intake on meat quality, lipid oxidation, and fatty acid composition of geese. Journal of Animal Science, 91(2), 764-771. https://doi.org/10.2527/jas.2012-5854

Nemati, Z., Alirezalu, K., Besharati, M., Amirdahri, S., Franco, D., & Lorenzo, J. M. (2020). Improving the quality characteristics and shelf life of meat and growth performance in goose fed diets supplemented with vitamin E. Foods, 9(6), 798. https://doi.org/10.3390/foods9060798

Pascariu, S. M., Pop, I. M., Simeanu, D., Pavel, G., & Solcan, C. (2017). Effects of wine by-products on growth performance, complete blood count and total antioxidant status in broilers. Brazilian Journal of Poultry Science, 19, 191-202. https://doi.org/10.1590/1806-9061-2016-0305

Pertuzatti, P. B., Mendonça, S. C., Alcoléa, M., Guedes, C. T., da Encarnação Amorim, F., Beckmann, A. P. S., & Américo, M. F. (2020). Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. LWT, 129, 109625. https://doi.org/10.1016/j.lwt.2020.109625

Russo, V. M., Jacobs, J. L., Hannah, M. C., Moate, P. J., Dunshea, F. R., & Leury, B. J. (2017). In vitro evaluation of the methane mitigation potential of a range of grape marc products. Animal Production Science, 57(7), 1437-1444. https://doi.org/10.1071/AN16495

Sanders, T. H., McMichael, R. W., & Hendrix, K. W. (2000). Occurrence of resveratrol in edible peanuts. Journal of agricultural and food chemistry, 48(4), 1243-1246. https://doi.org/10.1021/jf990737b

Sari, M., Onk, K., Sisman, T., Tilki, M., & Yakan, A. (2015). Effects of different fattening systems on technological properties and fatty acid composition of goose meat. European Poultry Science, 79. http://doi.org/10.1399/eps.2015.79

Tao, L. (2015). Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Adv. Food Technol. Nutr. Sci, 1, 135-142. http://dx.doi.org/10.17140/AFTNSOJ-1-123

Thapa, P. (2020). Application of micro algae in poultry nutrition; a review. Journal of Agriculture and Natural Resources, 3(2), 241-256. https://doi.org/10.3126/janr.v3i2.32512

Uhlířová, L., Tůmová, E., Chodová, D., Volek, Z., & Machander, V. (2019). Fatty acid composition of goose meat depending on genotype and sex. Asian-Australasian journal of animal sciences, 32(1), 137. https://doi.org/10.5713/ajas.17.0672

Vašeková, P., Juráček, M., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., & Ivanišová, E. (2020). Bioactive compounds and fatty acid profile of grape pomace. Acta Fytotechn. Zootechn, 23, 230-235. https://doi.org/10.15414/afz.2020.23.04.230-235

Wang, B., Zhang, L., Jiang, X., Wang, W., Wang, N., Sun, P., & Huang, G. (2010). Evaluation of nutritional value of grape seed meal in goose. Chinese Journal of Animal Nutrition, 22(2), 466-473

Yu, J., & Ahmedna, M. (2013). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221-237. https://doi.org/10.1111/j.1365-2621.2012.03197.x

Zhang, C., Wang, L., Zhao, X. H., Chen, X. Y., Yang, L., & Geng, Z. Y. (2017). Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poultry Science, 96(7), 2219-2225. https://doi.org/10.3382%2Fps%2Fpex004

Downloads

Published

2022-07-11

Issue

Section

Animal Science