Effects of the DGAT1 K232A polymorphism on milk production traits in Holstein cattle

Simona Dudásová, Martina Miluchová, Michal Gábor, Juraj Candrák, Katarína Dočkalová

Abstract


Article Details: Received: 2021-01-27 | Accepted: 2021-03-02 | Available online: 2021-09-30

https://doi.org/10.15414/afz.2021.24.03.233-237

DGAT1 gene polymorphism in exon 8 AA→GC which converts lysine to alanine at position 232 (K232A) was determined to have significant influence on bovine milk production characteristics like milk yield, protein content, fat content, and fatty acid composition. The aim of this study was to analyse the effect of DGAT1 gene polymorphism on dairy production traits [milk yield (kg), fat yield (kg), fat content (%), protein yield (kg) and protein content (%)]. Genotyping of 136 Holstein cows was performed using the ACRS-PCR method. The genotypes frequencies were as follows: homozygous genotype AA (80.88%), heterozygous genotype AK (16.91%) and homozygous genotype KK (2.21%). In the monitored population, allele A had a predominance with a frequency of 89.34% over allele K with a frequency of 10.66%. In the study was observed a statistically significant (P <0.0001) effect of DGAT1 K232A marker genotypes on breeding value variability for milk fat and protein content (%) as well as milk yield (kg) was observed.

Keywords: milk production, DGAT1, cattle, Diacylglycerol O-acyltransferase 1, Holstein cattle

References

Bobbo, T., Tiezzi, F., Penasa, M., De Marchi, M., & Cassandro, M. (2018). Association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls. Journal of dairy science, 101(9), 8087–8091. https://doi.org/10.3168/jds.2018-14533

Bovenhuis, H., Visker, M. H. P. W., Van Valenberg, H. J. F., Buitenhuis, A. J., & Van Arendonk, J. A. M. (2015). Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. Journal of dairy science, 98(9), 6572–6582. https://doi.org/10.3168/jds.2015-9564

Brody, R. J., & Kern, S. E. (2004). Sodium boric acid: a Trisfree, cooler conductive medium for DNA electrophoresis. Biotechniques, 36, 214–216.

Carvajal, A. M., Huircan, P., Dezamour, J. M., Subiabre, I., Kerr, B., Morales, R., & Ungerfeld, E. M. (2016). Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genetics and Molecular Research, 15(2), 1–12. http://dx.doi.org/10.4238/gmr.15027057

Čítek, J., Hanusová, L., Brzáková, M., Večerek, L., Panicke, L., & Lískovcová, L. (2018). Associations between gene polymorphisms, breeding values and glucose tolerance test parameters in German Holstein sires. Czech Journal of Animal Science, 63, 167–173. https://doi.org/10.17221/8/2017-CJAS

Čítek, J., Brzáková, M., Hanusová, L., Hanuš, O., Večerek, L., Samková, E., Křížová, Z., Hoštičková, I., Kávová, T., Straková, K., & Hasoňova, L. (2020). Gene polymorphisms influencing on yield, composition and technological properties of milk from Czech Simmental and Holstein cows. Animal Bioscience, 34(1), 2–11. https://doi.org/10.5713/ajas.19.0520

Ferlay, A., Bernard, L., Meynadier, A., & Malpuech-Brugère, C. (2017). Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie, 141, 107–120. https://doi.org/10.1016/j.biochi.2017.08.006

Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition – a review. Lipids in health and disease, 6(1), 25. https://doi.org/10.1186/1476-511X-6-25

Houaga, I., Muigai, A. W., Ibeagha-Awemu, E. M., Kyallo, M., Youssao, I. A., & Stomeo, F. (2018). Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Molecular biology reports, 45(6), 1849–1862. https://doi.org/10.1007/s11033-018-4331-4

Kadlecová, V., Němečková, D., Ječmínková, K., & Stádník, L. (2014). Association of bovine DGAT1 and leptin genes polymorphism with milk production traits and energy balance indicators in primiparous Holstein cows. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 64 (1), 19–26.

Kala, R., Samková, E., & Čítek, J. (2016). Selected candidate genes affecting milk fatty acids. Acta Fytotechnica et Zootechnica, 19 (5), 31–33. http://dx.doi.org/10.15414/afz.2016.19.si.31-33

Komisarek, J., & Michalak, A. (2008). A relationship between DGAT1 K232A polymorphism and selected reproductive traits in Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 26, 89–95.

Lu, J., Boeren, S., Van Hooijdonk, T., Vervoort, J., & Hettinga, K. (2015). Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. Journal of Dairy Science, 98(5), 3460–3469. http://dx.doi.org/10.3168/jds.2014-8872

Månsson, H. LL. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 52. https://doi.org/10.3402/fnr.v52i0.1821

Marchitelli, C., Contarini, G., De Matteis, G., Crisà, A., Pariset, L., Scatà, M. C., Catillo, G., Napolitano, F., & Moioli, B. (2013). Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. The Journal of dairy research, 80(2), 165. https://doi.org/10.1017/S002202991300006X

Mauriæ, M., Mašek, T., Beniæ, M., Špehar, M., & Starèeviæ, K. (2017). Effect of DGAT1, FASN and PRL genes on milk production and milk composition traits in Simmental and crossbred Holstein cattle. Indian Journal of Animal Sciences, 87(7), 859–863.

Palombo, V., Milanesi, M., Sgorlon, S., Capomaccio, S., Mele, M., Nicolazzi, E., D’andrea, M., Pilla, F., Stefanon, B., & Andrea, M. D. (2018). Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. Journal of dairy science, 101(12), 11004–11019. https://doi.org/10.3168/jds.2018-14413

Pereira, P. CC. (2014). Milk nutritional composition and its role in human health. Nutrition, 30, 619–627. https://doi.org/10.1016/j.nut.2013.10.011

Institute Inc. (2011) Administering SAS® Enterprise Guide® 5.1. Cary, NC: SAS Institute Inc, Version 9.3.

Tăbăran, A., Balteanu, V. A., Gal, E., Pusta, D., Mihaiu, R., Dan, S. D., Tăbăran, A. F., & Mihaiu, M. (2015). Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in Romanian Holstein cattle. Animal biotechnology, 26(2), 105–111. https://doi.org/10.1080/10495398.2014.933740

Tomka, J., Vašíčková, K., Oravcová, M., Bauer, M., Huba, J., Vašíček, D., & Peškovičová, D. (2016). Effects of polymorphisms in DGAT1 and LEP genes on milk traits in Holstein primiparous cows. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 66(2), 122–128. https://doi.org/10.15567/mljekarstvo.2016.0204

Vanbergue, E., Peyraud, J. L., Guinard-Flament, J., Charton, C., Barbey, S., Lefebvre, R., Gallard, Y., & Hurtaud, C. (2016). Effects of DGAT1 K232A polymorphism and milking frequency on milk composition and spontaneous lipolysis in dairy cows. Journal of Dairy Science, 99(7), 5739–5749. http://dx.doi.org/10.3168/jds.2015-10731

Wang, Q., & Bovenhuis, H. (2020). Combined use of milk infrared spectra and genotypes can improve prediction of milk fat composition. Journal of Dairy Science, 103(3), 2514–2522. https://doi.org/10.3168/jds.2019-16784


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Acta Fytotechnica et Zootechnica

© Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources