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The presented mini review examines phytoliths in plants and microorganisms, focusing on their formation, physico-chemical
properties, content in plant, and effects on livestock and human health. Phytoliths are primarily inorganic solid materials —
biominerals, often formed by organic acids within plant tissues. They are relatively insoluble, enduring diverse environmental
conditions (pH 3-9). Phytolith content in plant tissue varies significantly — from 2.5% to 70% - influenced by plant species,
fertilizer use, climate, and agronomic practices. Two main types, oxalates, and silicon dioxides in opal form, are most commonly
studied. Oxalates, found in both animal and human diets, can bind essential cations like calcium and magnesium, reducing their
bioavailability and potentially increasing toxicity risks. When ingested, these oxalates may form insoluble compounds linked to
physiological effects leading to risks associated with kidney failure. Phytolith research is interdisciplinary, spanning fields like
archaeology, medicine, agriculture, nanotechnology, ecology, and environmental science. The Part | of this mini review explores
the basic principles of the biomineral formation and their diversity. It goes into more detail about oxalates, their typical properties
and occurrence in plants with risks for human and animal health after ingestion. The Part Il of the mini review will discuss phytolith
classifications, their utility, and factors influencing the formation of the second most common phytoliths made of silicon dioxide.
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1 Introduction

In the past decade, there has been increased emphasis
on human and animal nutrition, as diet directly
influences growth, development, and health. However,
academic literature contains little emphasis on insights
into phytoliths, from “phyto” meaning plant and “lithos”
meaning rock, which could affect various physiological
functions. Many plants, including animal fodder and
human food, contain oxalates, with levels ranging from
3% to 70% (Nakata, 2003).

High content of oxalates in the diet could lead to
urinary, gallbladder, and kidney stones. Approximately

75% of all kidney stones are primarily composed of
calcium oxalate (Massey, 2003, Chaudhary et al., 2010).
The remaining oxalate concentrations in urine are
a risk factor for stone formation in vegans (Massey
2003, Beghalia et al., 2008), with the greater risk
associated with raw vegans. Also, phytoliths reduce
the absorption of iron and calcium, potentially leading
to hypocalcemia, a condition characterized by low
calcium levels in the blood (Waldmann et al., 2004).
Current knowledge suggests that stone formation
could be prevented by limiting foods rich in oxalates.
In Europe, the typical diet has relative lower oxalate
content, which reduces the risk of associated health
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issues, however, the situation may change over
the long term (Siener et al., 2020).

The biominerals formation, or biologically induced
crystallization of solid inorganic parts, is related to term
“soil mineralization”. The process that transforms organic
matter into simpler compounds, primarily water, carbon
dioxide, sulphur dioxide, and ammonium hydroxide,
releasing nutrients (such as calcium, sodium, and
potassium) bound to organic compounds associated
with releasing energy (Curlik & Kolesar, 2014). In Anglo-
Saxon literature, the term “mineral” is defined as
a crystalline phase which is equivalent to solid substrates,
precipitates, and similar entities. It is characterized by
a specific stoichiometry and crystalline structure (Mann,
2001). In the context of human nutrition, the term
“mineral” is often defined as a nutrient or chemical
elements most commonly in soluble ionic species that
an organism requires to perform certain vital functions
(Kaushal et al., 2022).

Therefore, the aim of this study is to examine phytoliths
formation in plants, which have both direct and indirect
impact on the nutrition in terms of food consumption.
Additionally, understanding their significance s
increasingly relevant in agronomy, veterinary and
medical science.

2 Formation of Biominerals - Phytoliths
in Various Species of Micro/organisms

Biomineralization must be understood in the context
of Earth’s evolutionary history, where it serves primarily
as a protective function, forming exoskeletons
in microorganisms. Biological mineralization began
around 3.5 billion years ago, evident in stromatolite
formations (Mann, 2001). About half a billion years
ago, life proliferated, forming various shells and
microskeletons composed of minerals such as calcium
carbonate, calcium phosphate, and silica, among
others that occurred primarily in marine environment
(Rashid et al., 2019). Evolutionarily, biominerals serve
as a reservoir of ions for various cellular functions,
enabling movement and environmental sensitivity
to gravity and the magnetic field. Iron-containing
biominerals, such as nanoparticulate formed by
magnetotactic bacteria (Strbak et al., 2022), have
currently particular significance for their biomedical
potential.

The process of biomineralization involves elements such
as Ba, Ca, Cu, Fe, K, Mg, and others, which form a solid
precipitate from the ambient environment (Ma et al.,
2021). It differs from classical geological crystallization,
as microorganisms partially regulate the biomineral
formation through enzymatic (metabolic) processes

based on their genetic information — a feature highly
attractive to biomimicry and biomimetics (Ma et al.,
2021). This mechanism is based on the atom-by-atom
principle, also known as “self-assembly,” which poses
the state of the art for future industrial applications
including bio-nanotechnology (Grzelczak et al.,, 2010,
Kolencik et al., 2014).

These minerals are not completely equivalent to
the ones formed by natural inorganic processes
because the organisms influence the initial conditions
and the whole process of formation (Crowther, 2009,
Addadi & Weiner, 2014). In terms of diversity, direct or
indirect biomineral production has been described
in bacteria (Strbak et al.,, 2022), fungi (Sebesta et al.,
2022) or plants (Kolencik et al.,, 2014). Among animals,
biomineralization was observed e.g. in cnidarians,
mollusks, and arthropods (Addadi & Weiner, 2014).

According to Mann (2001), biomineralization occurs

in two ways:

1. biologically induced mineralization, where
biominerals form as secondary (often toxic) products
of the organism without many useful functions, such as
urinary and gallstones, and other organominerals with
chemical nature based on calcium and magnesium
carbonate, and manganese and iron oxides;

. biologically controlled mineralization, which are
primary metabolic products with specific roles such as
shells, exoskeletons, and bones.

This group can be divided into:

a) extracellular formation, where ions are transported
out of the cell, producing extracellular organic matter
(matrix) from proteins and polysaccharides, leading to
the formation of bones and teeth;

b) intercellular, where minerals are produced
in intercellular spaces, producing a different kind of
exoskeleton, especially in unicellular organisms living
in communities;

c) intracellular excretion, where minerals are formed
inside the cell in vacuoles and are later transported
out to the environment.

3 Formation of Phytoliths in Plants
and Evaluation their Advantages

The synthesis of phytoliths - oxalates is a part of
the plants’ natural metabolism involving several
biochemical pathways, for instance, from oxaloacetate
as an intermediate in the tricarboxylic acid (TCA) cycle
or through enzymatic decarboxylation. Also, they could
form in light-exposed leaves from glyoxylate through
photorespiration, the glyoxylate cycle, or ascorbic acid
breakdown (Kaushal et al., 2022; Li et al., 2022).
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Phytoliths are naturally integrated in plants tissues, and
aftertheirdecay,theybecomepartofthesoilenvironment.
On average, 1 gram of dry phytomass contains 2 to 20 mg
of phytoliths, though this varies by plant species (Sharma
et al.,, 2019). The size typically ranges from 5 to 200 pym,
with a characteristic morphology and irregular surfaces
that could be variably coloured or colourless (Mann,
2001, Crutcher & Crutcher, 2019). They are relatively
stable in a wide range of acido-basic soil conditions
(pH = 3-9) and are well preserved in high humidity
or dry conditions. They occur in most environments,
such as rainforests (Crifo & Stromberg, 2020), mountain
ecosystems (Anetal.,, 2015), or others. Due to their relative
stability and characteristic properties, they serve as
a suitable diagnostic tool in various scientific disciplines.
In palaeontology, archaeobotany and paleoecology, they
are widely applied to the reconstruction of vegetation
dynamics and life cycle of micro/organisms or their
ambient conditions (Chen, 2024), indicate climate
changes (Rahman & Kawamura, 2011), or determine
“C isotopes, e.g. for medical purposes (Park & Gregory,

1980). When they are affected by high temperatures,
their morphology changes, at 500 °C, no changes are
visualized; at 600 °C, minor changes are noticeable; at
700 °C, more significant morphological modifications are
shownand at 800 °C, the phytoliths completely melt and
transform (Wu et al., 2012).

Phytoliths can have many modifications (Crutcher &
Crutcher, 2019) which bind various secondary or
trace elements. Additionally, they may contain small
amounts of alkali metals, alkaline earth metals,
metalloids, nonmetals, transition metals, lanthanides,
and actinides (Hart, 2001). During the uptake, storage,
and sedimentation of silica in cells, these accompanying
elements are gradually incorporated into the phytolith.
As noted by Hart (2001), phytoliths from the leaves
of two plant species, Actinotus helanthi and Triodia
mitchelli, growing in the same sediment, contained
these accompanying elements in different quantities.
Different types of phytoliths in various parts of plants,
in the calcium oxalates form (Figure 1 a, b, d) and opal
from of silica dioxide, are shown in (Figure 1c).

Figure 1

The images depict various types of phytoliths in different part of plants

A - stem of Petroselinum crispum; B - bract of Tilia cordata; C - spindle of Zea mays; D - leaf of Aloe vera, original image
visualization was conducted using SEM (Scanning Electron Microscopy
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4 Occurrence and Distribution of Soluble
and Insoluble Oxalates

Oxalic acid (OA) and its thermodynamically stable
crystalline forms, collectively referred to as oxalates,
are generally recognized as insoluble compounds,
predominantly calcium oxalate. This most commonly
occurs in two crystalline forms including weddellite and
whewellite (Figure 2a, b), that are present in all parts of
plants across all plant kingdom species (Li et al., 2022), as
well as in fungi (Sebesta et al., 2020) animals (Rahman et
al., 2013), and humans (Massey, 2003).

OA primarily imparts an acidic taste to fruits and
vegetables and commonly extends the post-harvest
stability period (Hasan et al., 2023). In plants, oxalic acid
plays various essential rolesin functionsincluding calcium
regulation, and metal detoxification (Li et al, 2022).
Oxalate poisoning could occur when animals consume
large amounts of oxalate-rich plants, particularly those
containing insoluble potassium oxalate (Young & James,
2019) where plant species such as Oxalis spp. offer highly
acidic cell liquid with low pH (Rahman et al., 2013).
In mammals, it is a metabolite of certain amino acids.

OA was first administered as a disinfectant in 1957
and is also used as a biological acaricide against mites
in beehives or other functional bee life cycles. Since it
is considered a natural compound found in honey, it is
approved for application in organic beekeeping (Bozkus,
2023). Although OA is obtained through microbial
production (Kumar et al., 2024), its properties make
it useful as a disinfectant to eliminate bacteria and
pathogens, a cleaning agent with potential in the food

industry (Anang et al, 2006), and for wastewater
purification, especially in controlling biofilm formation
in distributed drinking water systems (Chu & Lu, 2004).
OA is used in the production of oxalates, dextrin,
cellulose, tartaric acid, purified methanol, glycerol, and
stable hydrogen cyanide (Bastida et al., 2022; Koranian
et al, 2022). Additionally, oxalate leaching enhances
palygorskite’s surface properties and ion release, making
it a promising biomedical material for hemostasis (Yang
etal,, 2024).

Under laboratory conditions, oxalic acid appears as
a colourless, odorless powder or granular solid with non-
volatile and water-soluble character. Within a pH range of
5to 9, itis distributed in solution as a soluble oxalate ion
(Wiersma, 2011).

5 Content of Soluble and Insoluble
Oxalates in Plants

In plants, oxalates occur as insoluble salts of calcium,
magnesium, potassium, sodium, and other elements.
Some plants contain much higher levels of oxalates and
they are contained in grains, tubers, nuts, vegetables, and
fruits (Lo et al., 2018).

Generally, the highest oxalate content is found in leaves,
followed by seeds, with the lowest levels in stems. High
oxalate concentrations are particularly found in tropical
plants, where oxalates accumulatein reflection to drought
stress and climate changes (Rahman & Kawamura, 2011).
Examples of certain cultivated crops containing variable
amounts of oxalate are shown in Table 1.

A

Figure 2

The atomic arrangement of calcium oxalates in its common forms

A - calcium oxalate dihydrate — weddellite Ca(C,0,) -( 2.5-x)H,0; B — monohydrate — whewellite Ca(C,0,) - H,0, is shown using
the Bohr model in VESTA program. In the model, calcium (Ca) corresponds to blue colour, carbon (C) is brown, oxygen is red, and H
is visualized in pink one. The a, b, and ¢ — axes pose the 3D vector geometry
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Table 1 The content of soluble and insoluble oxalates in selected plants for consumption per 100 g

Plant species Plant species Oxalate content mg per 100 g

Garden parsley Petroselinum crispum 1,700
Carrot Daucus carota 500
Sweet potato Ipomoea batatas 240
Radish Raphanus sativus 480
Common bean Phaseolus vulgaris 360
Cabbage Brassica oleracea 35-190
Tomato Solanum lycopersicum 50
Garlic Allium sativum 360
Opium poppy Papaver somniferum 1,620
Lettuce Lactuca sativa 330
Celery Apium graveolens 190
Halogetont Halogeton glomeratus 120.8-300
African bristlegrass Setaria sphacelata 10.2-60.9
Curly Dock Rumex crispus 60.6-110.1
Sour Dock Rumex acetosa 50.8-120.9
Three-Color Amaranth Amaranthus gangeticus 80.6-110.9
Eatable Taro - Leaf Colocasia antiquorum 70
Eatable Taro — Tuber 20.2
Common Beet - Leaf Beta vulgaris 70.8-140.1
Common Beet - Tuber 6.8
Common Beet - Scabious 40-80.1
Spinach - Leaves Spinacia oleracea 54-120.3
Spinach - Stem 15-41
Alfalfa - hey Medicago sativa 9.6-11
Rice - straw Oryza sativa 16-40
Common millet - hey Panicum miliaceum 23
Soybean Glycine max 67-350
White Goosefoot — leaves Chenopodium album 93-185
Sowbane - leaves Chenopodium murale 99-210

Source: Massey et al., 2001, Massey, 2003, Rahman & Kawamura, 2011, Curlik & Kolesar, 2014, Lo et al., 2018, Crutcher & Crutcher, 2019, Siener et al.,

2020, Li et al., 2022, Hasan et al., 2023

Animal feed crops with high oxalate content are widely
cultivated in tropical and subtropical regions, such as
Halogeton glomeratus, Pennisetum clandestinum, Kochia
scoparia, Cenchrus ciliaris, Pennisetum purpureum,
Bassia hyssopifolia, Amaranthus retroflexus (Rahman &
Kawamura, 2011). Many studies indicate that the oxalate
content in plants varies because of the genetic, climatic,
and agronomic factors (Rahman & Kawamura, 2011).

6 Factors Influencing the Formation
and Content of Oxalates in Plants
From a genetic perspective, it has been evidenced that

different cultivars within the same region, subjected to
identical agronomic practices and cultivation conditions,

exhibited varying oxalate content (Massey, 2001).
Regarding the oxalate’s distribution within the plant,
the highest concentration is found in the leaves, followed
by the fruits and then the stems (Rahman et al., 2006).
In the case of stems, there is also a notable correlation
between their thickness, mechanical resistance, and
higher oxalate content. Consequently, future academical
and practical efforts should focus on selecting cultivars,
breeding strategies, or forage varieties that accumulate
lower oxalate levels in leaves, as ruminants exhibit
a preference for consuming leaves over stems (Li et al.,
2022).

Seasonal climate fluctuations significantly affect content
of oxalate in some plants, where factors such as climate
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zones, precipitation, day length, and sunlight hours could
alter oxalate content in plants that are potential forage.
Also, soil moisture plays a role; for instance, Rahman and
Kawamura (2011) reported that increased water uptake
by Atriplex halimus could stimulate oxalate levels in its
leaves. Similarly, Goyal & Kaur (2019) observed that high
oxalate levels in Pennisetum purpureum hybrids during
June and July reflect rapid accumulation during hot and
rainy periods. Forages in tropical regions typically have
higher oxalate levels than those in temperate zones,
suggesting association temperature with oxalate plants
accumulation (Rahman et al., 2006).

Since oxalate content could vary with the season and
plant maturation, implementing appropriate agronomic
harvesting practices is needed to prevent its excessive
content. For instance, Abu-Zanat et al. (2003) observed
higher oxalate levels in mature Atriplex halimus plants
than younger seedlings. Analogically, Rahman et
al. (2009) confirmed the same trend in Pennisetum
purpureum, where oxalate content depended on
the harvest interval. Strategies to reduce oxalate levels
involving soaking, germination, cooking, or ensiling
(Ghanati et al., 2024).

The macronutrient-based fertilizers effect on oxalate
production in plants varies. For instance, the question
about nitrogen-role in oxalate synthesis still remains
unclear. Conversely, manure containing potassium
has shown a correlation with higher oxalate content
in Pennisetum purpureum. Furthermore, information on
the effect of phosphorus fertilization on oxalate levels
in forage is still lacking, although superphosphate
application has been observed to reduce oxalate levels
in vegetables (Rahman & Kawamura, 2011).

7 Risks Assessment with Excessive Oxalate
Consumption for Animals and Humans

Essential nutrients are found in both plant and animal
products (Smehyl & Gondekova, 2022; Kapusniakova
et al,, 2023), but their absorption differs. Average daily
oxalate intake corresponds to 70-150 mg (Ghanati et al.,
2024). High oxalate levels could hinder the absorption
of mineral nutrients such as iron and calcium and
in contrast, meat does not contain oxalates and provides
vitamins and mineral nutrients in greatly bioavailable
and absorbable species (Liebman & Al-Wahsh, 2011).

Soluble oxalate binds to cations such as Na*, K*, NH,,
or Mg?*, partly limiting their absorption (Li et al., 2022).
At higher concentrations in the rumen or intestine,
insoluble oxalate crystals, which cannot be absorbed
are periodically excreted in excrements. Ruminants
could partially metabolize oxalate through mechanisms
involving degradation by rumen (intestinal) bacteria,

including Oxalobacter formigenes, Enterococcus faecalis,
and lactic acid bacteria (Campieri et al., 2001, Stewart et
al., 2004).

Low calcium intake allows soluble oxalate to be absorbed
into the bloodstream. High oxalate levels in the blood
could bind with Ca?* or Mg?*, forming insoluble crystals
and potentially leading to urinary or gallstones (Massey
2003; Chaudhary et al., 2010).

In severe cases, high oxalate exposure could lead to
poisoning where, acute poisoning causes a sudden drop
in serum Ca?* levels, impairing cell function and leading
to hypocalcemia, muscle tremors, weakness, collapse,
and potentially death. The parathyroid hormone (PTH)
is usually released in reaction to low blood Ca**, causing
the Ca release from bones. Chronic oxalate poisoning
results in calcium oxalate crystals damaging kidney
tubules, leading to nephron damage, kidney fibrosis,
renal failure, and urolithiasis (Ghanati et al., 2024).

8 Conclusion

The Part | of the critical mini-review evaluated strategies,
principles, and conditions for the formation and
evolution of biominerals, exploring the diversity
in different microorganisms and organisms and
applications across classical academic fields such
as paleontology, paleoecology, and climate studies.
By examining mechanisms of biologically induced
extra- and intracellular crystallization, we highlight
“self-assembly” as a promising approach for future
technological challenges and solutions including
bionanotechnology.

In exploring the genesis and phytolith cycling
in plants, we discuss water-soluble oxalic acid and
thermodynamically more stable, insoluble oxalates,
which are among the most common in animal and
human plant-based diets. This is especially significant
because of the long-term excessive intake potential,
their distribution with undesirable reactivity, reduced
macro- and micronutrients bioavailability with potential
toxicity.

We provided a comprehensive overview of oxalates,
covering their presence in plants, physicochemical
and biological properties, distribution, and potential
risks associated with excessive intake. Understanding
their significance is increasingly relevant in agronomy,
veterinary and medical science. The second part
of this mini-review will address the classification
challenges, formation factors, and agronomical roles
of the second most common phytolith - silicon dioxide
in opal form.
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