Homozygosity indicators in canine MHC region of the Standard Poodle and Leonberger populations

Geena Mary Heydie Cartick, Gábor Mészáros


Submitted 2020-06-15 | Accepted 2020-08-04 | Available 2020-12-01


Dog breeds are the leading examples of artificial selection, with sometimes extreme changes between the wolf-like phenotypes and current breeds. This increased selection pressure manifest in increased homozygosity throughout the genome, including the major histocompatibility complex (MHC) with large influence on the immune system. The MHC region in 98 Leonberger and 37 Standard Poodle dogs was examined using single nucleotide polymorphism (SNP) data. The overall homozygosity levels and via the runs of homozygosity (ROH) were calculated as indicators to assess the MHC regions, compared to other random parts of the dog genome. High proportion of homozygosity was observed in all examined chromosomes, ranging from 58 to 78%. The ROH was preferred to the overall level of homozygosity, as it showed the variability within the MHC regions. The homozygosity was even lower at the locations of the genes with a known effect on the immune response, confirming previous findings.

Keywords: Run of homozygosity, SNP, Dog, Dog leukocyte antigen


Barth, S.M., Schreitmüller, C.M., Proehl, F., Oehl, K., Lumpp, L.M., Kowalewski, D.J., Marco, M.D., Sturm, T., Backert, L., Schuster, H., Stevanović, S., Rammensee, H.-G., Planz, O. (2016). Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy. PLOS ONE 11, e0167017. https://doi.org/10.1371/journal.pone.0167017

Biniok, J. (2008). The Poodle, Our Best Friends. Pittsburgh: Eldorado Ink.
Brown T, Borgia G, Sullivan J, Willis M, Appleton S. (2019). Artificial Selection. Natl. Geogr. Educ., Encyclopedia Entry.

Burnett, R.C., DeRose, S.A., Wagner, J.L., Storb, R. (1997). Molecular analysis of six dog leukocyte antigen class I sequences including three complete genes, two truncated genes and one full-length processed gene. Tissue Antigens 49, 484–495. https://doi.org/10.1111/j.1399-0039.1997.tb02783.x

Burnett, R.C., Geraghty, D.E. (1995). Structure and expression of a divergent canine class I gene. J. Immunol. 155, 4278–4285.
Ceballos, F.C., Hazelhurst, S., Ramsay, M. (2018). Assessing runs of Homozygosity: a comparison of SNP Array and whole genome sequence low coverage data. BMC Genomics 19, 106. https://doi.org/10.1186/s12864-018-4489-0

Chang, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell, S.M., Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4. https://doi.org/10.1186/s13742-015-0047-8

Debenham, S.L., Hart, E.A., Ashurst, J.L., Howe, K.L., Quail, M.A., Ollier, W.E.R., Binns, M.M. (2005). Genomic sequence of the class II region of the canine MHC: comparison with the MHC of other mammalian species. Genomics 85, 48–59. https://doi.org/10.1016/j.ygeno.2004.09.009

Graumann, M.B., DeRose, S.A., Ostrander, E.A., Storb, R. (1998). Polymorphism analysis of four canine MHC class I genes. Tissue Antigens 51, 374–381. https://doi.org/10.1111/j.1399-0039.1998.tb02976.x

Kennedy, L. (2009). Major Histocompatibility Complex Diversity in Dogs & Disease Associations. Tufts Canine Feline Breed. Genet. Conf. 2009.

Kennedy, L.J., Angles, J.M., Barnes, A., Carter, S.D., Francino, O., Gerlach, J.A., Happ, G.M., Ollier, W.E.R., Thomson, W., Wagner, J.L. (2001).

Nomenclature for factors of the dog major histocompatibility system (DLA), 2000: Second report of the ISAG DLA Nomenclature Committee. Tissue Antigens 58, 55–70. https://doi.org/10.1034/j.1399-0039.2001.580111.x

Kennedy, L.J., Randall, D.A., Knobel, D., Brown, J.J., Fooks, A.R., Argaw, K., Shiferaw, F., Ollier, W.E.R., Sillero-Zubiri, C., Macdonald, D.W., Laurenson, M.K. (2011). Major histocompatibility complex diversity in the endangered Ethiopian wolf (Canis simensis). Tissue Antigens 77, 118–125. https://doi.org/10.1111/j.1399-0039.2010.01591.x

Khatib, H. (2015). Molecular and Quantitative Animal Genetics. New York: John Wiley & Sons.

Klein, J. (1986). Natural history of the major histocompatibility complex. Cell Biochem. Funct. 6, 222–222. https://doi.org/10.1002/cbf.290060321
Meyermans, R., Gorssen, W., Buys, N., Janssens, S. (2020). How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21, 94. https://doi.org/10.1186/s12864-020-6463-x

Millstein, R.L. (2017). Genetic Drift, in: Zalta, E.N. (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
R Core Team (2013). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rebelato, A.B., Caetano, A.R., Rebelato, A.B., Caetano, A.R. (2018). Runs of homozygosity for autozygosity estimation and genomic analysis in production animals. Pesqui. Agropecuária Bras. 53, 975–984. https://doi.org/10.1590/s0100-204x2018000900001

Rodenburg, T.B., Turner, S.P. (2012). The role of breeding and genetics in the welfare of farm animals. Anim. Front. 2, 16–21. https://doi.org/10.2527/af.2012-0044

Safra, N., Pedersen, N.C., Wolf, Z., Johnson, E.G., Liu, H.W., Hughes, A.M., Young, A., Bannasch, D.L. (2011). Expanded dog leukocyte antigen (DLA) single nucleotide polymorphism (SNP) genotyping reveals spurious class II associations. Vet. J. Lond. Engl. 1997 189, 220–226. https://doi.org/10.1016/j.tvjl.2011.06.023

Signer-Hasler, H., Burren, A., Neuditschko, M., Frischknecht, M., Garrick, D., Stricker, C., Gredler, B., Bapst, B., Flury, C. (2017). Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet. Sel. Evol. 49, 83. https://doi.org/10.1186/s12711-017-0358-6

van Rooijen, J. (2014). Natural and artificial selection and suffering and well-being. Front. Genet. 5. https://doi.org/10.3389/fgene.2014.00393
Wagner, J.L. (2003). Molecular Organization of the Canine Major Histocompatibility Complex. J. Hered. 94, 23–26. https://doi.org/10.1093/jhered/esg002

Wagner, J.L. (1999). Organization of the canine major histocompatibility complex: current perspectives. J. Hered. 90, 35–38. https://doi.org/10.1093/jhered/90.1.35

Wagner, J.L., Creer, S.A., Storb, R. (2000). Dog class I gene DLA-88 histocompatibility typing by PCR-SSCP and sequencing. Tissue Antigens 55, 564–567. https://doi.org/10.1034/j.1399-0039.2000.550607.x

Wagner, J.L., DeRose, S.A., Burnett, R.C., Storb, R. (1995). Nucleotide sequence and polymorphism analysis of canine DRA cDNA clones. Tissue Antigens 45, 284–287. https://doi.org/10.1111/j.1399-0039.1995.tb02454.x

Wright, S. (1932). The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. Proc. Sixth Int. Congr. Genet. 356–366.

Xiao, J., Xiang, W., Chai, Y., Haywood, J., Qi, J., Ba, L., Qi, P., Wang, M., Liu, J., Gao, G.F. (2016). Diversified Anchoring Features the Peptide Presentation of DLA-88*50801: First Structural Insight into Domestic Dog MHC Class I. J. Immunol. 197, 2306–2315. https://doi.org/10.4049/jimmunol.1600887

Yuhki, N., Beck, T., Stephens, R., Neelam, B., O’Brien, S.J. (2007a). Comparative Genomic Structure of Human, Dog, and Cat MHC: HLA, DLA, and FLA. J. Hered. 98, 390–399. https://doi.org/10.1093/jhered/esm056

Yuhki, N., Beck, T., Stephens, R., Neelam, B., O’Brien, S.J. (2007b).Comparative genomic structure of human, dog, and cat MHC: HLA, DLA, and FLA. J. Hered. 98, 390–399. https://doi.org/10.1093/jhered/esm056

Zhang L., Orloff M.S., Reber S., Li S., Zhao Y., Eng C. (2013). cgaTOH: Extended Approach for Identifying Tracts of Homozygosity. PLoS ONE 83 E57772 8.


Full Text:



  • There are currently no refbacks.

Copyright (c) 2020 Acta Fytotechnica et Zootechnica

© Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources